Soft robots have considerable applications in gripping system, medical treatment and rehabilitation due to their softness and flexibility. However, soft robots confront the problems of complex driving device, low driving efficiency and difficult controllable movement. Therefore, it is of great significance to develop new driving modes and to realize the motion manipulation of soft robots. Micro/nanomotors (MNMs) can effectively convert other forms of energy into mechanical energy and possess the feature of near infrared remote control, MNMs will open new avenues for the motion manipulation of biomimetic devices by assembling MNMs into array structure. Based on that, this project will study the construction and motion of MNMs array. The MNMs array are fabricated via colloidal lithography for the first time. Then the motion manipulation and mechanism driven by near-infrared light are studied. The MNMs array will be further used for driving the bionic flexible fish to move at controllable manners. The fabrication method of MNMs array is simple, low cost and high efficiency. As a noncontacting and harmless stimulus, NIR provides an efficient approach to spatially and temporally manipulating the motion and inherently has the unique advantages of fast response, controllable operability. Our investigation not only provides a novel approach for driving soft robots, but also greatly promotes the development of the material to the devices.
软体机器人由于其柔软、可灵活变形的优势在抓持作业、医疗康复等领域发挥作用。但软体机器人面临着驱动装置复杂、驱动效率低、可控运动难的问题。因此发展新的驱动方式并对其运动进行可控操控是目前亟待解决的问题。鉴于微纳马达将外场能转化为动能和近红外光远程操控的特性,将微纳马达组装成阵列结构并将其作为驱动部件驱动软体机器人有望解决上述问题。基于此,本项目拟从微纳马达阵列的构建和运动操控方面展开:首次利用胶体晶体刻蚀方法构建微纳马达阵列结构;研究近红外光对微纳马达阵列的运动操控并阐明驱动机制;进一步将微纳马达阵列作为驱动部件集成于仿生柔体鱼并利用近红外光操控仿生柔体鱼的可控运动。本项目中微纳马达阵列组成的驱动部件其构建方法简单、制备成本低、效率高,且近红外光的驱动方式简单易控、可以远程操控。本项目的完成不仅为仿生软体机器人的驱动和可控操控提供了一种新的方法,而且对材料向器件的发展有着巨大的推进作用。
该项目针对目前软体机器人在驱动和运动操控方面所面临的问题。在充分结合单分散个体微纳马达将外场能转化为自身动能的特性,特别是近红外光对微纳马达运动的远程操控的优势的基础上,利用胶体晶体刻蚀技术实现中空金微锥阵列结构的集成微纳马达的可控构建,并利用近红外光对其运动进行操控,实现集成微纳马达的仿水母运动及作为驱动部件驱动泡沫船的可控运动等。在此基础上,负责人利用胶体刻蚀、金属沉积等方法,制备了纳米柱、纳米肼、微条带、金属纳米环等多种微纳阵列结构,研究了纳米柱阵列、纳米肼阵列、微条带等结构的自修复机理,且对金纳米环的光学性能进行了实验和理论的研究。进一步实现了纳米柱阵列、纳米肼阵列、微条带等结构的自修复行为,包覆银纳米粒子的银纳米锥阵列的传感应用等。负责人在项目执行期间作为第一作者/通讯作者发表SCI论文4篇,EI论文1篇。申请发明专利9项,其中已有5项获得授权。以上研究结果为外场响应的微纳阵列结构的设计、调控及应用提供了理论和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
基于二维材料的自旋-轨道矩研究进展
基于图卷积网络的归纳式微博谣言检测新方法
钯-金-钯复合纳米结构的构筑及其近红外光催化研究
近物面剪切流中空泡群运动与载荷特性研究
阵列光镊操控微颗粒燃料微燃烧和气化的基础研究
压电驱动细胞分选微泵操控机理及设计