Ultrathin two-dimensional (2D) polymer nanosheets are covalently linked networks of monomers with macroscopic lateral size and nanoscale even molecule-scale thickness which present exotic quantum size effect and surface effect, exhibiting high application potential in molecular separation, energy storage, biological sensing and detecting, photoelectric devices, catalysis, and so on. Conducting polymer films with distinctive conductivity, photoelectric response that differ from other polymer materials, and outstanding mechanical strength, stability and processability better than inorganic material, play an important role in materials science, widely used in chemical or biological sensor, ion exchange membrane, organic electronic devices, polymer battery, artificial muscle, etc. However, the films obtained through spin coating or interface polymerization usually find uneven structure or suffer damage during the transfer process, which limits its further development in the aspect of application. Especially with the development of portable, flexible integrated circuit and electronic nanodivices, higher requirements for conducting polymer films are proposed, such as ultrasmooth surface, and highly aligned structures with high conductivity. Therefore, it remains a big challenge to obtain free-standing conducting polymer nanosheets with high quality.In this proposal, we put forward the synthesis of highly aligned ultrathin conducting polymer nanosheets via interface-induced polymerization. The whole reaction process was executed in a peculiar 2D supramolecular system composed of nanometer-thick water layers which were sandwiched by liquid crystalline lamellar bilayer membranes. The confined water layers, which possesses nanoscale thickness and macroscale planar dimensions, can be regarded as a 2D micro-reactor, where the dimension and thickness of products thus could be well controlled. And precursors can be introduced into the 2D confined space for the preparation of 2D polymer nanomaterials. During the reaction, the interface between biomolecular membranes and water layers in the system not only play as a 2D template role, but also have some inducing effect on the monomers dispersing in the water layer, leading to highly aligned structures in the polymer nanosheets. We will study systematically the process and mechanism of the growth of conducting polymer nanosheets. The physcial properties of the nanosheets, such as optical, electrical and mechanical properties, will be investigated by both experiments and theoretical simulations. Our strategy will provide a powerful alternative way for producing polymer nanosheets with high quality and might contribute widely to the 2D materials-based chemistry.
超薄二维聚合物纳米片是指具有纳米级甚至分子级厚度、宏观横向尺寸、分子内部结构以共价键周期性相结合的纳米材料。该类聚合物具备独特的二维量子尺寸效应及表面效应,使其表现出异于其体相材料的热学、光学、电学及机械性能等,从而在分子分离、能量存储、分子传感与识别、光电器件及催化等领域有很好的应用前景。导电聚合物薄膜由于其异于其他高分子材料的导电性、光电响应性以及优于无机材料的机械强度、稳定性和可加工性,从而在材料科学中占有重要地位,广泛应用于化学或生物传感器、离子交换膜、有机电子器件、聚合物电池、人工肌肉等领域。然而目前制备的导电聚合物薄膜由于结构的不均匀性而导致性能不稳定、成本高,极大地限制了其基础性和应用性研究。本研究拟在双亲小分子组装的层状液晶体系中,利用厚度可控的水层作为聚合反应空间,双分子膜/水层界面的模板及诱导作用,制备具有大面积、纳米级甚至分子级厚度、高取向性超薄导电聚合物纳米片。
超薄二维聚合物纳米片是指具有纳米级甚至分子级厚度、宏观横向尺寸、分子内部结构以共价键周期性相结合的纳米材料。该类聚合物具备独特的二维量子尺寸效应及表面效应,使其表现出异于其体相材料的热学、光学、电学及机械性能等,从而在分子分离、能量存储、分子传感与识别、光电器件及催化等领域有很好的应用前景。结合本项目研究计划,着重研究在由双亲小分子自组装构筑的层状液晶双分子膜体系中超薄、高取向性、二维聚合物纳米片的制备、物理性质研究及在二维限域空间聚合物生长过程探讨;开发了具有自支撑、透明、大面积、超薄石墨烯薄膜的制备方法以及物理性质研究,探讨其作为电极材料构筑超薄、柔性、全固态超级电容器的应用前景;开发了新型的自修复原理(动态Au-S配位作用),构筑了具有高强度、超拉伸性、高效快速自修复性纳米复合物,并取得了一系列有意义的成果。本项目对于发展新的超薄、大面积、高取向性聚合物纳米片的制备方法,以及超薄、透明、大面积石墨烯薄膜的制备方法以及具有高效自修复聚合物复合体系研究具有十分重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双吸离心泵压力脉动特性数值模拟及试验研究
结核性胸膜炎分子及生化免疫学诊断研究进展
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
聚合物Janus纳米片的可控制备与性质研究
超薄介孔Janus复合纳米片可控制备及乳液界面催化
响应性柔性聚合物Janus纳米片制备及性质研究
基于大π共轭配体的导电配位聚合物超薄纳米片的设计与合成