In order to satisfy the great demand of high-end equipment in the fileds of advancing manufacturing, aerospace industry, etc., and solve the common and key problems of industrial robot drive devices, this project based on the obtained research achievements and invention patents about transmission and drive mechanisms, performs the relative research of intelligent drive devices for industrial robots, by intersectionally employing several theories and methods of various disciplines, such as machinery, material, mechanics, electronics, informatics, etc.. The main research contents include the dynamic behavior of industrial robot drive mechanisms under the multi-field coupling condition, high reliable precision filtering drive device design, mixed lubrication mechanism and system dynamics for optimization design of gear transmission pair, the deformation coordination bionic design theory and rigid-flexible composite transmission of drive mechanisms based on human joints function,the intelligent control theory with high precision, response speed and robustness.Eventually,this project will propose innovative design theory and method of high reliable precision filtering drive device,and solve the key technology of high reliable precision filtering drive devices and industrial robots integrated system. This project has great probability to obtain significant innovation and several important achievements, which have independent intellectual property rights and are in the lead internationally, in the fields of basic research of high performance drive devices for industrial robots, thus it can establish the key foundation of science and technology for greatly improving the technical level of the mechatronical equipment and drive system in our country.
本项目旨在根据我国先进制造、航空航天等工程领域高端装备发展的重大需求,针对目前国内外工业机器人驱动装置迫切需要解决的高可靠精密智能驱动等共性和关键难题,在申请人已取得的新型传动装置等多项发明专利及有关研究成果的基础上,综合运用机械、材料、力学、电子、信息等多学科优化设计理论与方法,着重开展多场耦合条件下工业机器人传动与驱动机构动态服役行为,高可靠精密滤波驱动装置创新设计,齿轮传动副界面混合润滑行为与动力学性能优化,具有人体关节功能的驱动机构变形协调仿生设计与刚-柔复合传动,控制精度、响应速度和鲁棒性的智能控制方法等研究,提出高可靠精密滤波驱动装置创新设计理论与方法,解决高可靠精密滤波驱动装置与工业机器人集成系统的关键技术瓶颈,在高性能工业机器人驱动机构应用基础研究方面有重大突破和创新,取得拥有自主知识产权并达到国际先进水平的成果,为提高我国高端装备驱动机构技术水平奠定基础。
本项目根据我国先进制造、航空航天等工程领域高端装备发展的重大需求,针对目前国内外工业机器人驱动装置迫切需要解决的高可靠精密智能驱动等共性和关键难题,在已取得的新型传动装置等多项发明专利及有关研究成果的基础上,综合运用机械、材料、力学、电子、信息等多学科优化设计理论与方法,着重开展了多场耦合条件下工业机器人传动与驱动机构动态服役行为,高可靠精密滤波驱动装置创新设计,齿轮传动副界面混合润滑行为与动力学性能优化,具有人体关节功能的驱动机构变形协调仿生设计与刚-柔复合传动,控制精度、响应速度和鲁棒性的智能控制及早期故障预示方法等研究,提出了高可靠精密滤波驱动装置创新设计理论与方法,解决了高可靠精密滤波驱动装置与工业机器人集成系统的关键技术瓶颈,在高性能工业机器人驱动机构应用基础研究方面有重大突破和创新,取得了拥有自主知识产权并达到国际先进水平的成果,为提高我国高端装备驱动机构技术水平奠定基础。相关研究成果获国家技术发明二等奖1项,发表论文41篇,申请或授权发明专利11项,研制出原理样机3台,指导博士和硕士研究生12名。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
新型刚—柔复合高可靠精密传动应用基础研究
套索驱动柔软细长机器人建模与精密运动控制
工业机器人直接驱动快速高精度伺服系统的研究
工业无源网络的低功耗高可靠感知和传输方法研究