Water pollution by heavy metals still remains a serious environmental and public concern all over the world. Today, various strict regulations related to heavy metals are imposed as well as the increasing public awareness of negatively effects on human beings. Thus, it is significant to develop efficient technologies for enhanced removal of heavy metal ions from contaminated waters.In the present study, a novel hybrid nanocomposite is fabricated for sequestration of heavy metal ions by impregnating ZrO2 nanoparticles within a porous polymer beads and the immobilized charged groups bound to the polymeric matrix would enhance decontamination of toxic metals. The main objective of the current study is just to evaluate sorption behaviors and performance onto the hybrid adsorbents, elucidate the effect of surface functional groups of polymeric supports on encapsulated nanoparticle dispersion and sorption efficiency, as well as the potential Donnan membrane preconcentration of target metals prior to effective removal by nanosized ZrO2 sorbent. The column sorption performance for application would also be carried out to verify the enhanced removal of heavy metal ions in waters.
众所周知,重金属污染是一个世界性课题。随着重金属污染控制标准日趋严格及对重金属危害认识的不断深入,迫切需要开发高效重金属深度净化技术。本项目针对现有杂化吸附材料对水中重金属深度净化过程中表现出孔道内纳米颗粒易团聚、吸附利用效率低的问题,提出以荷电功能基团修饰的多孔高分子聚合物为母板,氧化锆为无机纳米吸附剂,研制新型功能基强化的纳米杂化功能材料。探究杂化材料对水中重金属的深度净化性能及机理;揭示母版功能基团对无机纳米颗粒分散及吸附利用率的强化作用,阐明荷电功能基特有的唐南膜富集效应对重金属深度净化的作用机制,初步评价对重金属污染水的深度净化性能,从而为水中重金属的深度净化和安全控制提供理论基础和技术支持。
重金属的深度净化和安全控制是水质安全的重要保障,本项目针对常规纳米杂化材料去除微量重金属过程中,存在纳米粒子易团聚,活性降低的技术瓶颈,提出研制荷电功能化纳米氧化锆/聚苯乙烯杂化材料,并用于水中微量重金属离子的深度净化。研究表明:通过简单磺化修饰反应及前驱体原位沉积技术可成功研制新型杂化功能材料,载入纳米粒子呈现高分散活性。载体高荷电功能基团(-SO3-H 或 –CH2N+(CH3)3Cl)存在,可调节纳米孔微电场环境,强化载入纳米氧化锆粒子分散及活性,进而表现出较大的吸附容量。但高的吸附容量并不意味着优异工作吸附容量,载体荷正电功能团与目标重金属形成Donnan膜排斥效应,从而抑制对重金属吸附性能。本项目制备高性能杂化材料可将水中微量铅离子净化至1ppb 以下, 较WHO饮用水标准降低了一个数量级,吸附后杂化材料可有效再生和重复利用。本项目共发表SCI研究论文21篇,其中Journal of the American Chemical Society(IF=12.1)1篇,Environmental Science & Technology(IF=5.33)1篇,Nature 旗下Scientific Reports(IF=5.58)4篇。该研究工作还受到美国工程网站Advanced in Engineering 亮点报道,并授予Key Scientific Article 奖。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
上转换纳米材料在光动力疗法中的研究进展
纳米孔吸附剂Fe(III)调控表面电位强化吸附海水中重金属的研究
离子液体荷电杂化纳滤膜强化去除水中重金属的研究
生物负载-纳米氧化铁/石墨烯基复合材料协同吸附去除再生水中重金属研究
多酸基纳米孔无机-有机杂化固体质子传导材料的合成和性能