Al-Mg alloys with high Mg content have important application prospects in many fields especially in aviation and automobile industries. However, the products of such alloys produced by conventional processing methods contain coarse dendrites and large second phases, which make the alloy brittle and difficult to carry out deep processing. Therefore, their applications are limited. The present project utilizes the coupling effect of frictional shear and cooling during continuous rheo-extrusion to improve the thermodynamic and kinetic conditions of nucleation and growth of the melt. At the same time, microstructure will be further refined by shear and recrystallization. Thus fine equiaxed grains and nanoscale phases could be obtained. Mechanical properties of the alloys are significantly improved by the present process as compared with conventional methods, and an effective solution to solve the above bottleneck problem is provided.. In order to reveal the formation mechanism of equiaxed grains and nanoscale phases during this process, we propose to study the shear and cooling models in continuous rheo-extrusion process, the mass transfer mechanism, the nucleation and growth mechanism, dynamic recrystallization mechanism under coupling effect of frictional shear and cooling, and optimize the process conditions. A new short processing method and the corresponding theory for microstructure controlling of Al-Mg alloys with high Mg content will be established. High performance Al-Mg alloys will be manufactured. The proposed project will provide the basis for the related research and technology development.
高Mg含量Al-Mg合金在航空、汽车等领域具有重要应用前景,而常规方法制备的此类合金中含有粗大的枝晶与第二相,使其脆性大,深加工困难,制约了广泛应用。本项目有效利用连续流变挤压过程中摩擦剪切与冷却的耦合作用,改善熔体形核与长大的热力学与动力学条件,并使组织发生剪切破碎与再结晶细化,形成细小等轴晶和纳米第二相,比常规方法制备的合金力学性能大幅度提高,为解决上述瓶颈问题提供了有效解决方案。. 为揭示该过程中等轴晶与纳米相形成机理,拟研究连续流变挤压过程的摩擦剪切/冷却模型,摩擦剪切/冷却耦合下熔体传质机理、合金形核与长大机制、动态再结晶机制,以及影响摩擦剪切/冷却耦合作用的因素,优化工艺条件。以建立短流程调控高Mg含量Al-Mg合金组织的新方法及相关理论,制备高性能Al-Mg合金材料,为相关研究与技术开发提供依据。
项目针对高Mg含量Al-Mg合金凝固组织因存在粗大枝晶和第二相,导致合金脆性大、深加工困难的问题,提出Al-Mg合金连续流变挤压短流程成形技术,高效消除枝晶组织并细化晶粒和第二相,大幅提高材料性能,并实现短流程加工。.圆满完成了任务书中的研究计划,获得主要成果如下:建立了短流程调控高Mg含量Al-Mg合金粗大枝晶和第二相的新方法;揭示了连续流变挤压高Mg含量Al-Mg合金等轴晶与纳米相形成机理;实现了稳定制备高Mg含量Al-Mg合金线材,使强度比传统连铸杆提高44.8%,伸长率提高237.8%;发表标有资助号的SCI收录论文15篇;授权国家发明专利4件,申请国家发明专利1件;参与制定了首个半固态成形国家标准《铸造铝合金半固态流变成形工艺规范》;获辽宁省科学技术进步二等奖;培养毕业博士研究生2名,毕业硕士研究生5名;在国内外学术会议作会议报告4次。.科学意义与创新点:(1)建立了短流程调控高Mg含量Al-Mg合金粗大枝晶和第二相的新方法及相关理论;(2)采用自主研发的组织调控与加工装备制备出了具有优异的强度与塑性匹配的高Mg含量Al-Mg合金线材,且具有短流程、节能、低成本等优点。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
三级硅基填料的构筑及其对牙科复合树脂性能的影响
多引擎并行CBC模式的SM4算法的芯片级实现
滑环轴向移动距离对温控永磁式磁流变传动性能的影响
大变形高固溶Mg含量Al-Mg合金的纳、微米混晶组织形成及强塑性同时提高机制
镁合金连续流变挤压成形过程的界面凝固与摩擦机理
Al-Mg合金循环连续扩展挤压-拉拔大塑性变形微观组织结构演变及强韧化机制研究
超细晶Al-Mg合金中溶质Mg原子调控韧性和强度的机制