The low frequency underwater radiation noise caused by the vibration of mechanical equipment is an important factor affecting the stealth performance of the submarine,although the passive vibration isolation is widely used, the control effect of the low frequency vibration is not ideal enough. Here, the active vibration control can break through its bottleneck problems such as narrower vibration isolation band and weak adaptive ability, which is an effective way to suppress the low frequency vibration, and it is also an important development trend of submarine vibration and noise reduction. In view of the difficult acquisition of the complex excitation and the characteristics of the floating raft isolation, there is a great need for solving the key technologies in modeling and control of the rigid-flexible coupled and mass distribution system before achieving the engineering application of this technology.. This project focuses on the floating raft vibration isolation system of the submarine, the multi-body dynamics method is adopted to construct the virtual prototype which is more accurate and suitable for control, and it can reveal the rigid-flexible coupled law of the floating raft vibration isolation; And then, based on the theory of frequency identification and signal synthesis, kernel function control, and considering the synchronization identification of the primary/secondary path, internal feedback and other factors, the kernel adaptive control strategy of multi-input and multi-output system is also studied with the idea of convex combination parallel operation, which can achieve complementary advantages of feedforward filtering and feedback notch; Moreover, the simulation and experiment are carried out to improve and verify the proposed model and algorithm in the project. All of which are effective to solve the coupled vibration control problem of the floating raft in complex excitation, and some useful exploratory work will be also launched to provide the theoretical basis for promoting the application of active vibration control on submarine.
由机械设备振动引起的低频水下辐射噪声是影响潜艇隐身性能的重要因素,被动隔振虽应用广泛但低频振动控制效果还不够理想。振动主动控制可突破被动隔振频带窄、自适应能力弱等瓶颈问题,是抑制低频振动的有效途径,也是潜艇减振降噪的重要发展方向。鉴于复杂激励不易有效获取和浮筏隔振特点,要实现该技术工程应用,还需解决刚柔耦合、质量分布系统建模及控制等关键技术。. 本项目以艇用浮筏隔振系统为研究对象,采用多体动力学方法构建精度较高又适合控制的虚拟样机,揭示浮筏隔振刚柔耦合振动规律;利用频率识别及信号合成、核函数控制等理论,考虑主/次通道同步辨识、内部反馈等因素,基于凸组合并行运算思想研究多输入多输出系统核函数自适应控制策略,实现前馈滤波和反馈陷波优势互补;并通过仿真和实验研究,对所提模型和算法予以改进验证。为有效解决复杂激励条件下浮筏耦合振动控制问题,开展有益的探索性研究,也为主动控制实艇应用提供理论依据。
机械设备振动所致低频水下辐射噪声是影响潜艇隐身性能的重要因素,主动控制作为抑制低频振动的有效途径,是潜艇减振降噪的重要发展方向。为此,本项目以艇用浮筏隔振系统为研究对象,采用子结构法和有限元方法构建了浮筏隔振系统模型,探索自由振动和约束条件下浮筏隔振刚柔耦合系统模态振型、受迫振动位移和应力分布响应特性。基于频率识别及信号合成、核函数控制等理论,开展主动控制自适应策略研究。仿真和实验结果显示,所构建有限元模型有效揭示了柔性筏架弹性支撑条件下振动规律,探索了步长因子、算法模式等要素对振动控制效果的影响,并从主动控制力、系统辨识影响等方面分析控制效果,设计的振动主动控制算法能有效控制弹性体多通道振动响应,且核函数滤波控制策略相对具有更好控制优势,阐明了复杂激励条件下浮筏隔振系统耦合振动控制问题,也为主动控制实艇应用提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合
拥堵路网交通流均衡分配模型
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于板壳耦合结构的浮筏主动隔振及结构声辐射主动控制研究
磁悬浮浮筏主动隔振系统刚度匹配机理的研究
高架轨道浮筏隔振系统耦合机理分析及参数优化匹配研究
多振子耦合准零刚度隔振浮筏的非线性隔振和减振机理研究