How to make low-cost porous carbon materials with tunable hierarchical strucure and surface properties that are highly demanded in supercapacitors remains a challenge. In this project, we aim to develop a new procedure to make high performance porous carbon materials with tuned hierarchical strucure and surface properties from coal tar pitch by using nano-sized calcium carbonate (nano-CaCO3) as template coupling with microwave heating technique, in wich the carbon dioxide (CO2) released from the decomposition of nano-CaCO3 would function as activating agent for in-situ physical activation of carbon precursors. This novel process is simple, and will lead to porous carbon materials with tuned hierarchical strucure and surface properties. The effects of the physical and chemical properties of raw mateials, the mass ratio of raw materials, and the heating mode on the pore structure and the surface properties of the as-made hierarchical porous carbons will be addressed in detail. The mechanism involved in the in-situ activation of coal pitch by CO2 from the decomposition of nano-CaCO3 will be studied. The application potential of these porous carbons in supercapacitor will be explored in neutral aqueous electrolytes and organic electrolytes,and the energy storage mechanism involved will be studied. The storage and transport scheme of the charged ions in hierarchical pores of porous carbons, and the effects of the pore structure parameters and the surface properties of porous carbons on their specific capacitance, internal resistance and energy density will be investigated in order to figure out the relationship between the performance-structure-synthesis parameters of the hierarchical porous carbons. This work will shed new lights on the energy storage mechanism of hierarchical porous carbons for supercapacitors. The results will give a new impetus on the research of carbon materials for energy storage, and will help improve the performance of supercapacitors.
高性能超级电容器用廉价多孔炭材料的结构与性能调变是一个富有挑战性的课题。本项目提出以煤沥青为碳源,廉价的纳米碳酸钙为模板,利用微波高效加热和程序升温热处理使碳酸钙分解产生二氧化碳实现对碳源的原位内活化,制备微/中/大孔分布和孔道尺寸较佳的分级多孔炭。课题将研究揭示原料化学组成/配比、加热模式对分级多孔炭的结构及表面性质的本征影响规律,阐明碳酸钙模板法耦合二氧化碳原位内活化法、由煤沥青制备分级多孔炭的机制,研究并建立分级多孔炭的廉价、快速、可控制备的新方法和新技术。在水系和有机系电解液中,研究揭示荷电离子在分级多孔炭分级孔中储存和输运规律及多孔炭结构和性质对其比容、内阻和能量密度等的影响规律,诠释分级多孔炭功能?结构?合成三者之间的关系,研究揭示超级电容器用分级多孔炭材料的储能机理。项目的实施将有助于丰富煤化工和储能碳素材料学科的科学内涵,为进一步提升超级电容器的性能奠定坚实的科学基础。
高性能超级电容器用廉价多孔炭材料的结构与性能调变是一个富有挑战性的课题。本项目分别以焦化副产物煤沥青、煤焦油、蒽油、洗油、纯芴为碳源,以价廉易得的纳米碳酸钙、氧化镁、氧化锌为导向模板,协同原位KOH活化制备了分级多孔石墨烯或者多孔炭纳米片材料。考察了原料配比、温度、碳源种类、模板种类等对所得多孔炭材料结构和电化学性能的影响规律。主要结论如下:. 以煤沥青为碳源,以纳米碳酸钙为模板时,所得多孔石墨烯的比表面积达1330 m2/g;在BMIMPF6离子液体电解液中,当电流密度为0.05 A/g时,其比容达139 F/g,能量密度达76.9 Wh/kg。当以纳米氧化镁代替纳米碳酸钙时,制备了中空多孔石墨烯球,所得材料的比表面积介于1719-3449 m2/g之间,电极材料在6 M KOH电解液中,循环15000次后,容量保持率达97.3%。当以纳米氧化锌代替纳米氧化镁时,制备了石墨烯纳米囊。当以煤焦油为碳源时,所得材料的比表面积达2193 m2/g,在BMIMPF6电解液中,0.05 A/g的电流密度下,其比容为172 F/g,其能量密度能达到95.1 Wh/kg。当以蒽油代替煤沥青,作为碳源时,制备了卷曲状多孔石墨烯纳米片,所得材料在BMIMPF6电解液中,在0.05 A/g的电流密度下,其比容为256 F/g, 其能量密度能达到142.8 W h/kg;在20 A/g的电流密度下,其比容为123 F/g。当以富含多环芳香性小分子的洗油代替煤沥青,作为构建多孔炭纳米片的模块时,制备了多孔炭纳米片,所得样品在6 M KOH电解液中,在0.05 A/g电流密度下,其比容达222 F/g;在100 A/g电流密度下,其比容保持为176 F/g,显示了极好的倍率性能。当以纯芴代替结构复杂的煤沥青,作为碳源时,以氧化镁为模板协同氢氧化钾活化,制备了超级电容器用分级多孔炭纳米片,结合模拟计算结果诠释了由纯芴合成分级多孔炭纳米片的机理。最后,将所得多孔材料的平均孔径Dap、BET比表面积SBET、微孔表面积Smic、外表面积Sext和其比容C进行回归分析,获得了这些变量对电极材料比容的影响权重。实验中用作导向的碳酸钙、氧化镁、氧化锌模板易于除去和回收利用,所得多孔炭材料应用领域广泛。本项目制备工艺简单,易于商业化生产。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
高压工况对天然气滤芯性能影响的实验研究
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
超级电容器用纳米孔炭材料的设计与制备研究
自模板法构建高电容性能生物质基分级结构多孔炭及其形成机制研究
基于生物质的三维分级多孔炭的可控制备及其超级电容器性能研究
电化学电容器用纳米多孔炭的表面状态设计研究