ZrCo based material is very promising for tritium capture, hydrogen absorption and storage and gas purification application because of its large hydrogen storage capacity, excellent kinetics and activation performance. However, ZrCo base alloy is easily take place hydrogen disproportionation at high temperature, easily poisoned by impurity gas, and could hardly hold helium atoms. Above these, its industrial application has been greatly limited. First-principles calculations, material thermodynamic approach or others micro-macro multiscale simulation methods would be integrated for focusing on in-depth analysis of the thermodynamic and kenetic mechanism of chemical hydrogen disproportionation reactions, poisoning effects and helium dissolution process. High-throughput and concurrent first-princples calculations, automatic material properties data acquisition and analysis methods would be combined for exploring the internal quantitative/qualitative relationship of "Compositon - Temperature - Sturcture - Properties". Meanwhile, the existing hydrogen material thermodynamic database would be improved and used to perform material design predictions. Base on the integrated high-throughput computational materials platform of MatCloud, an automative material design calculation workflows containing high-throughput modeling and screening would be developed, and could be extended to other types of alloys. Completely playing the potentials of "Materials - Computer" interdisciplinary sciences, which provides theoretical basis for the selection of alloying elements, and the precondition of computer aided design of new materials would be explored.
ZrCo基合金具有吸氢容量大、室温吸氢平衡压低、动力学性能好、活化简单等显著优势,被广泛应用于氚捕集、吸/储氢、气体纯化等领域,但是其高温下易发生歧化反应、易被杂质气体毒化、固氦性能差等,严重限制了其工业应用。目前的研究主要基于实验,然而受测试条件、手段等所限,很难做到对材料微观结构→宏观性能的全面评估。本项目采用高通量第一性原理计算、材料信息学、及材料热力学计算等微观→宏观跨尺度相集成和耦合的方法和技术,深入分析歧化反应、毒化反应和固氦晶格稳定性热/动力学机理;通过高通量并发式材料计算与数据高效采集与分析方法相集成,补充完善项目组已有氢能材料热力学数据库,建立ZrCo基集氚合金“成分-温度-相结构-抗毒化歧化固氦性能”之间定量或定性解析关系,优选改性ZrCo基集氚材料的合金化元素种类和添加量。该研究对探讨如何采用高通量材料计算和材料信息学开展合金理论设计,具有重要的前瞻性探索意义。
ZrCo基合金具有吸氢容量大、室温吸氢平衡压低、动力学性能好、活化简单等显著优势,被广泛应用于氚捕集、吸/储氢、气体纯化等领域,但是其高温下易发生歧化反应、易被杂质气体毒化、固氦性能差等,严重限制了其工业应用。目前的研究主要基于实验,然而受测试条件、手段等所限,很难做到对材料微观结构→宏观性能的全面评估。本项目采用高通量第一性原理计算、材料信息学、及材料热力学计算等微观→宏观跨尺度相集成和耦合的方法和技术,深入分析歧化反应、毒化反应和固氦晶格稳定性热/动力学机理;通过高通量并发式材料计算与数据高效采集与分析方法相集成,补充完善项目组已有氢能材料热力学数据库,建立ZrCo基集氚合金“成分-温度-相结构-抗毒化歧化固氦性能”之间定量或定性解析关系,优选改性ZrCo基集氚材料的合金化元素种类和添加量。该研究对探讨如何采用高通量材料计算和材料信息学开展合金理论设计,具有重要的前瞻性探索意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
合金化对ZrCo储氘材料抗粉化和抗歧化性能的影响
基于元素调控ZrCo型合金抗氢致歧化效应及机理研究
钛锆基单相贮氚高熵合金薄膜的制备及固氦性能研究
Ti元素改性对ZrCo系贮氚合金氦行为影响及机制研究