In this project, a multi-field coupled, nonlinear mechanical model will be proposed for soft active composite materials and structures based on dielectric elastomer and smart hydrogel. The mechanical model includes the multi-field coupling of the diffusion effects and electromechanical behaviors, which can investigate the large deformation of hyper-elastic materials and multi-field coupled stabilities of soft active composite materials and structures. Analitical model and finite element methods will be developed for soft active composite materials and structures by combining the mechanical theory of large deformation and the multi-field coupled thermodynamic theory. The mechanical model considering hyper-elastic behaviors will be employed to investigate the effects of material parameters,electromechanical stabilities and the interfaces in composite material on the effective modulus, actuation by temperature and ion concentration, electromechanical sensing and actuating performances. The influence of ionic diffusion and polarization on the electromechanical actuation and stabilities will be studied in the composite structures of dielectric elastomer and active hydrogel with high toughness. The intrinsic relations between the macroscopic behaviors such as viscoelastic effects, failures and dynamic behaviors in multi-field coupled loadings and the microscopic structure of polymer chains will be examined. The results will guide the material designs. Based on the structural stabilities and the design principles of funcional composite material,structural mechanical investigations will be conduncted on serveral actuating and sensing structures with various geometries. Optimized composite materials, structures and operating methods will be designed and examined to enhance mechanical, electrical and and multi-field coupling performances of the soft active composite materials and structures.
本项目将基于柔性智能材料非线性力学理论,以由介电高弹体与高韧性智能水凝胶等材料组成的复合型材料及结构为研究对象,考虑其在多物理场耦合作用下的扩散作用和力电效应,提出能够同时包含超弹材料大变形特征和多场耦合稳定性效应的力学分析模型。结合材料大变形理论和多物理场耦合热力学模型,建立复合型柔性智能材料与结构的理论分析模型以及有限元仿真方法。针对复合型柔性智能材料与结构,研究离子扩散作用和电极化对驱动变形与力电稳定性的影响。探讨该类复合型材料与结构中粘弹性效应、多物理场耦合失效和动力学响应等宏观性能与聚合物材料微观高分子链结构的内在联系,依此指导材料优化设计。基于大变形结构的稳定性以及功能复合材料结构设计等基本原理,针对几类具有不同几何特征的驱动、传感结构开展结构力学研究。设计并验证相应的优化结构和操纵模式,优化柔性智能材料的空间分布,提升复合结构的力学、电学及多场耦合性能。
项目基于柔性智能材料非线性力学理论,以由介电高弹体与高韧性智能水凝胶等材料组成的复合型材料及结构为研究对象,考虑其在多物理场耦合作用下包含超弹材料大变形特征和多场耦合稳定性效应的力学分析模型。建立复合型柔性智能材料与结构的理论分析模型以及有限元仿真方法。针对复合型柔性智能材料与结构。提出了介电弹性体-水凝胶复合驱动材料,研究了该类复合型材料与结构中物理场耦合变形与器件设计。基于大变形结构的稳定性以及功能复合材料结构设计等基本原理,针对几类具有不同几何特征的驱动、传感结构开展结构力学研究,建立复合型柔性智能材料与结构的理论分析模型以及有限元仿真方法,设计了以软体机器鱼为代表的的软体智能驱动结构与器件,发表论文20篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
多铁性材料的多物理场耦合力学研究
多场耦合下功能梯度微机电系统非线性结构力学性能研究
多物理场下烧结纳米银材料及封装互连结构力学行为研究
多物理场耦合下复合材料结构疲劳失效机理研究