It is well known that controlling the interface is a key to realize the high efficiency reinforcement of nanofillers for elastomer matrix. To provide a guidance for well controlling the interface, the most important scientific issue is to quantitatively characterize the interaction between elastomer and nanofiller and the interfacial properties of elastomer/nanofiller composites, and to build the interaction- interfacial properties-viscoelasticity relationship. In this work, a new technique for quantitative characterizing the interaction between elastomers and nanofillers, and the interfacial properties of elastomer/nanofiller composites such as the interfacial thickness and interfacial nanomechanical properties, will be built for the first time based on a newly developed atomic force microscopy (AFM) technique, namely Peak force Quantitative Nanomechanical Mapping (PF-QNM) technique. The experimental methods and the relative parameters will be optimized. The effect of physical and chemical characteristics of elastomers and nanofillers on their interfacial interaction and interfacial properties, and the effect of interfacial properties on elastomer chain mobility and viscoelasticity of nanocomposites will be systematically studied. Then, the relationship among elastomer-nanofiller interaction, interfacial properties and viscoelasticity of nanocomposites will be built. In a word, a new scientific method for quantitatively characterizing the interface of elastomer nanocomposites and the relationship between the interface properties and viscoelasticity will be built in this work to provide a guidance for the preparation of high performance elastomer nanocomposites. 6-8 high-level scientific papers are expected to be published in foreign academic journals.
界面调控是纳米粒子高效强化弹性体的关键。定量表征弹性体大分子-纳米粒子的相互作用和界面性能,明晰这种相互作用-界面性能与复合材料粘弹性的关系,是实现界面调控首要解决的科学问题。本项目基于新近发展的原子力显微镜峰值力定量纳米力学(PF-QNM)技术,拟通过对实验方法和参数的优化研究,首次建立实时快速、定量表征弹性体大分子-纳米粒子的相互作用及界面性能(界面层厚度和界面纳米力学性能)的科学方法,进而系统研究并揭示弹性体和纳米粒子的物理化学性质对两者相互作用及界面性能的影响关系,研究不同的界面性能对大分子运动松弛能力及粘弹性的影响规律,最终建立弹性体-纳米粒子相互作用-界面性能与纳米复合材料粘弹性的响应关系。该研究可望为纳米复合材料的界面定量研究提供一种新方法,也将为弹性体-纳米粒子的界面调控和高性能弹性体纳米复合材料的设计与制备提供科学依据和理论指导。预期在国外学术期刊上发表6~8篇高水平论文
调控纳米粒子与弹性体的界面作用是实现弹性体高效增强的关键。本项目基于原子力显微镜峰值力定量纳米力学(AFM PF-QNM)技术,建立了实时快速定量表征弹性体大分子-无机纳米粒子的相互作用的方法;建立了碳管/弹性体纳米复合材料及白炭黑(SiO2)/弹性体纳米复合材料界面性能(界面层厚度和界面纳米力学性能)的定量表征方法。结合高清AFM粘附力图和力-距离曲线分析,证实了SiO2/弹性体复合材料中存在界面双层结构(紧致层和疏松层),进一步揭示了SiO2粒径、偶联剂种类及接枝率、弹性体大分子性质(分子量、分子极性)对复合材料界面性能及大分子运动松弛能力和粘弹性的影响规律,进而建立了弹性体-纳米粒子相互作用-界面性能与纳米复合材料粘弹性的响应关系。本项目为弹性体纳米复合材料的界面定量研究提供了一种新方法,为弹性体-纳米粒子的界面调控和高性能弹性体纳米复合材料的设计与制备提供理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种加权距离连续K中心选址问题求解方法
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
基于5G毫米波通信的高速公路车联网任务卸载算法研究
粘弹性体润湿接触界面摩擦形成机制与调控
有机长链离子修饰无机纳米粒子及调控聚合物复合材料结构和性能研究
聚α-萘胺基纳米复合材料界面结构及其与红外辐射和微波吸收性能关系研究
刚性粒子填充高聚物复合材料的界面相结构和性能的研究