Physical function monitoring and assessment is a complicated problem in system science, requiring us to find effective mathematical solutions.Geometric algebra is able to perform fast and efficient computation of invariant algebra by constructing a unified algebra representation of classic geometric problems, achieving classic geometric computation using a unified geometric language. It provides an elegant and effective mathematical tool for biometric pattern recognition, physical functional assessment, and intelligent monitoring using sensor networks. This research project integrates geometric algebra with biometric pattern recognition for efficient functional assessment. Specifically, we first establish a geometric algebra representation of the physical functional system in the spatiotemporal domain based on domain knowledge of professional instruments for functional assessment. Second, we perform geometric algebra analysis of physical functions and develop spatiotemporal correlation models, extracting and uncovering correlation between geometric invariants in physical functional monitoring data. Finally, by constructing the optimal covering of continuous behaviors of physical functions with geometric patterns, we develop a confidence classification scheme for continuous functional assessment。This allows us to establish new models and methods for physical function intelligence monitoring and assessment, as well as to evaluate the performance and effectiveness of our proposed methods in real-world scenarios.
生理机能智能检测与评估是复杂系统科学问题,需要寻求有效的数学方法来研究解决,而几何代数通过建立经典几何的统一代数表示,实现了不变量代数的高效计算,从而实现了用统一的几何语言进行经典几何计算,它的理论为生理机能仿生模式识别模式的智能检测与评估问题提供了新的简洁有效的数学工具。本课题将几何代数与仿生模式识别理论相结合,研究生理机能智能检测与评估问题。首先,结合人体生理机能评估指标信息,建立生理机能系统几何代数时空信息表示;其次,利用几何代数对生理机能系统进行时空分析与建立相关时空模型,分析和挖掘生理机能信息时空域几何不变量相关性;最后,通过构造出人体生理机能连续性行为不变量的几何代数最佳模板几何覆盖体,实现其生理机能连续性智能检测与评估的可信度分类,为生理机能信息智能检测与评估提供新模型与新方法,通过实际场景检验该系统对生理机能智能检测与评估的有效性与先进性。
本项目首先建立了设计生理机能系统数据流的几何代数表达与基本运算软件工具包;其次针对生理机能出现的问题,构造降维几何代数(RGA)理论,利用RG A理论,进行输入图像,神经元,卷积内核,学习算法以及RGA框架内的所有相关计算,该方法充分保留联合信道信息,从而降低RGA-CNN网络复杂度;然后,针对人体生理机能表现分析身体状况,通过完整几何代数框架骨架数据来进行分析,进行的集成人体动作分类识别方法,得到相关生理机能的分析;最后,初步建立生理机能评估系统,并进一步完善。取得相关的研究成果,按照项目执行情况,完成了该项目。项目完成了生理机能的几何代数的模型建立与分析理论,并初步形成相关系统。已经发表论文36 篇,SCI 31,会议论文5篇,专著5本, 5人3次参加国际会议,申请发明专利17项,其中授权专利4项,PCT 7项,正在培养博士研究生2 名,已经硕士毕业研究生10名。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
五轴联动机床几何误差一次装卡测量方法
基于全模式全聚焦方法的裂纹超声成像定量检测
基于图卷积网络的归纳式微博谣言检测新方法
人工智能技术在矿工不安全行为识别中的融合应用
可积系统的代数与几何结构
视频时空兴趣点检测与描述的几何代数方法
代数几何与微分几何
代数几何与微分几何