Two-dimensional (2D) perovskites have been attracted tremendous attention, due to their high stability, the tunability of their optical and electrical properties. However, 2D perovskites with the natural multiple-quantum-well structures have the quantum confinement effect, resulting in the limited thickness of the optical absorption layer for 2D perovskite solar cells (PSCs) with the best performance. As a result, some key scientific problems are also needed to resolve, such as an insufficient light absorption and low photoelectric conversion efficiency for 2D PSCs. In this project, inverse opal photonic crystal heterostructures with double photonic bandgaps and ordered macroporous structure are introduced into 2D PSCs. Therefore, 2D perovskites based on photonic crystal heterostructures are fabricated and applied as the optical absorption layers to obtain an excellent optical property and a large carrier collection area. It is beneficial to improve the optical absorption efficiency and carrier transport properties for 2D PSCs. The crystallization kinetics of 2D perovskites is studied by using photonic crystal heterostructures as substrates. The effect of photonic crystal heterostructures on optical absorption, exciton dissociation, and carrier transport is analyzed in detail. The regulation mechanism among photonic bandgap, optical absorption, and carrier transport is elucidated. In addition, the structure parameters of 2D perovskite films generally include the interface energy level, thickness, and optical property. The intrinsic relationship between the structure parameters of 2D perovskite films and photoelectric performance is revealed. It is aimed to construct 2D PSCs with high photoelectric conversion efficiency (>13%). The research results will provide experimental basis and theoretical evidence for developing a new type of high-efficiency PSCs.
二维钙钛矿材料因其稳定性好、光学及电学性能可调等优点而受到广泛关注。然而具有多量子阱结构的二维钙钛矿材料存在量子限制效应,导致性能最佳二维钙钛矿太阳能电池光吸收层厚度有限,引起器件对入射光吸收不充分、光电转换效率低等问题。本项目拟利用反蛋白石光子晶体异质结的双光子带隙与有序大孔结构特征,设计构筑基于光子晶体异质结的二维钙钛矿光吸收层,使其具有优异光学性能和大载流子收集面积,以期提高器件光吸收效率与载流子输运性能。研究二维钙钛矿材料在光子晶体异质结中的结晶动力学过程,分析光子晶体异质结对器件光吸收、激子解离、载流子输运等物理过程的影响,阐明光子带隙、光吸收及载流子输运三者之间的调控机制,揭示出二维钙钛矿薄膜的界面能级、厚度及光学性能等结构参数与器件光电性能之间的内在规律关系,从而构建出光电转换效率高于13%的二维钙钛矿太阳能电池。本项目将为发展新型高效钙钛矿太阳能电池提供实验基础与理论依据。
二维钙钛矿材料因其稳定性好、光学及电学性能可调等优点而受到广泛关注。然而具有多量子阱结构的二维钙钛矿材料存在量子限制效应,导致性能最佳二维钙钛矿太阳能电池的光吸收层厚度有限,引起器件对入射光吸收不充分、光电转换效率低等问题。本项目利用陷光结构优点,构建光伏性能优异的二维钙钛矿太阳能电池。主要研究内容有:1) 研究不同制备技术对氧化镍成膜的影响,并应用于三维铅基钙钛矿太阳能电池中;相关研究结果表明氨水作为氧化镍前驱体溶液添加剂,能改善氧化镍薄膜的载流子输运性能,提高电池器件的光伏性能。2) 研究陷光结构中低维铅基钙钛矿薄膜的成膜机制,并制备成钙钛矿太阳能电池;相关研究结果表明陷光结构有利于提高电池器件的短路电流密度,促进电池器件光电转换效率的提升。3) 研究氧化镍薄膜对锡基钙钛矿太阳能电池光伏性能的影响,实验结果表明基于氧化镍的锡基钙钛矿太阳能电池光电转换效率有待提升,但能有效改善锡基电池器件的稳定性。4) 探索低维钙钛矿材料在光电探测器中的应用,初步构建具有两个光吸收区的光电探测器,实现较高的响应度和较大的光-电响应带宽,以期能够探测出高功率和多波段的光信号。5) 研究电沉积技术对硫属化合物成膜的影响,并应用于染料敏化太阳能电池中;相关研究结果表明,采用反向恒压电沉积技术制备的硫属化合物薄膜展现出了优异的电催化性能,尤其是具有陷光结构的硫属化合物薄膜能进一步提升电池器件的光伏性能。本项目的顺利实施,为发展新型高效稳定钙钛矿太阳能电池提供实验基础与理论依据,为拓展钙钛矿材料应用领域提供新的研究思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
近水平层状坝基岩体渗透结构及其工程意义
二维钙钛矿/碳纳米管体相异质结的构建及其在碳基太阳能电池中的光电特性研究
柔性锡基钙钛矿太阳能电池的原位构建及其光电性能研究
二维过渡金属硫化物/钙钛矿异质结构的光电性能研究
基于氧化钛同质结电子传输层钙钛矿太阳能电池的设计与光电性能研究