实和复的非线性椭圆偏微分方程的诺伊曼边值问题及几何应用

基本信息
批准号:11771396
项目类别:面上项目
资助金额:48.00
负责人:陈传强
学科分类:
依托单位:宁波大学
批准年份:2017
结题年份:2021
起止时间:2018-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:侍述军,吴超,毕国娇,吴晓婧
关键词:
内部正则性方程曲率方程边界正则性Hessian诺伊曼边值问题
结项摘要

The nonlinear elliptic partial differential equation is a basic study project, including the existence、 the regularity and the uniqueness of solutions,etc., which is closed related to some geometric problems. By the late 1970s, the theory of nonlinear elliptic equations is applied to the study of Geometry, and it plays an important role. A seires of important geometric problems related to nonlinear elliptic equations were solved, including the Yamabe problem, the positive mass conjecture and the Calabi conjecture. A priori estimates and the regularity theory of elliptic equaitons play a crucial role in the solutions of these problems. Till now, the Dirichlet problems of fully nonlinear elliptic PDEs have been widely studied and there are many important applications. But for the corresponding Neumann problems, there are still many open problems. This project studies the a priori estimates and the regularity theory of some real and complex fully nonlinear elliptic partial differential equations, including the interior and the global a priori estimates of Neumann problems, and establish the existence theory and the regularity theory. Also, we apply these theories to study some relevant geometric problems such as the Yamabe problems with boundary and the geometric inequalities.

非线性椭圆偏微分方程是一个基本研究对象,其中解存在性、正则性及唯一性等都是重要的研究课题,并且与一些几何问题有密切联系。从上世纪七十年代末期开始,非线性椭圆型方程理论应用到了几何学的研究中,并且起了重要作用。一系列与非线性椭圆型方程相关的重要几何问题得到了解决,这包括 Yamabe 问题,正质量猜想以及 Calabi 猜想。椭圆型方程解的先验估计和正则性在这些问题的解决中起了关键作用。目前,完全非线性椭圆偏微分方程的 Dirichlet 问题得到比较充分的研究和应用,相应的诺伊曼边值问题仍有很多问题未知。本项目将研究实和复的完全非线性偏微分方程的先验估计和正则性,包括内部先验估计和诺伊曼边值问题解的整体先验估计等,建立解的存在性和正则性的理论,以及应用这些理论研究带边的高阶 Yamabe 问题和几何不等式等相关的几何问题。

项目摘要

非线性椭圆偏微分方程是一个基本研究对象,其中解存在性、正则性及唯一性等都是重要的研究课题。椭圆型方程解的先验估计在这些问题的解决中起了关键作用。目前,完全非线性椭圆偏微分方程的 Dirichlet 问题得到比较充分的研究和应用,相应的诺伊曼边值问题仍有很多问题未知。本项目研究实和复的完全非线性偏微分方程诺伊曼边值问题的先验估计,进而得到解的存在性和正则性理论。并研究一些相关的几何问题。..项目执行期间,项目负责人及其团队认真深入地研究了相关问题。项目负责人发表SCI 论文5 篇,均在国际权威杂志 Math. Annalen, Bulletin of Mathematical Sciences J. Differential Equations, International Mathematics Research Notices等。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
3

特斯拉涡轮机运行性能研究综述

特斯拉涡轮机运行性能研究综述

DOI:10.16507/j.issn.1006-6055.2021.09.006
发表时间:2021
4

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022
5

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022

陈传强的其他基金

批准号:11301497
批准年份:2013
资助金额:22.00
项目类别:青年科学基金项目

相似国自然基金

1

几何中完全非线性椭圆偏微分方程的斜边值问题

批准号:11601311
批准年份:2016
负责人:徐金菊
学科分类:A0304
资助金额:18.00
项目类别:青年科学基金项目
2

实复Finsler几何及其应用

批准号:11571287
批准年份:2015
负责人:严荣沐
学科分类:A0202
资助金额:50.00
项目类别:面上项目
3

共形几何中完全非线性椭圆方程的边值问题

批准号:11801405
批准年份:2018
负责人:董伟松
学科分类:A0304
资助金额:25.00
项目类别:青年科学基金项目
4

非线性偏微分方程及其在复几何中的应用

批准号:10701025
批准年份:2007
负责人:嵇庆春
学科分类:A0202
资助金额:15.00
项目类别:青年科学基金项目