The controlled growth and assembly of graphene, silicene, and other graphene-related two-dimensional (2D) materials are expected to be compatible with current silicon-based microelectronic technology, with significant importance to the development of future information nanodevices. This proposal will be aiming to construct multifunctional nanostructures orientated to future information nanodevices. High-quality large-scale single-crystalline graphene, silicene, germanene, as well as their in-plane interconnected heterostructure or vertical stacked heterostructure, will be prepared at semiconductor or insulating substrates by molecular beam epitaxial growth method. We will precisely design and control the growth process and parameters in order to obtaining high quality materials for subsequent physical measurements and device constructions. We will explore a reliable way for direct formation of heterostructures during epitaxial growth process. For instance, intercalating silicene layer between bilayer graphene by tuning the experimental parameters in a precise way, yielding a vertical graphene-silicene hybrid structures. Furthermore, we will utilize a variety of advanced technologies, for instance, low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), scanning transmission electron microscopy (STEM), angle-resolved photoemission spectroscopy (ARPES), Raman spectroscopy with a combination of density functional theory (DFT) calculations, to determine the fine atomic structures and intrinsic properties. These experimental measurements of the as-prepared materials will be conducted in-situ under the ultra-high vacuum condition. The electronic transport characteristics and possible novel quantum behavior of these 2D materials and heterostructures will also be investigated at different sample temperatures by four-probe and PPMS measurement systems. With a comprehensive analysis of the experimental data, we will elucidate in a single atomic level the energy band structure, transport properties and possible novel quantum behaviors involved in these novel 2D materials and hybrid structures. The implementation of this project will set up an important scientific basis for the building of novel hybrid structures by 2D materials for future information devices. The financial support from NSFC would give me the unique opportunity of performing cutting-edge research, contributing significantly to the fields of 2D crystalline materials and information technology.
石墨烯、硅烯等新型二维材料的控制生长和组装有望与当前的硅基技术兼容,对未来信息器件的研制具有重要意义。本项目将基于以前的工作基础,研究石墨烯类二维晶体材料及其叠层结构的控制生长和物性。拟采用分子束外延生长方法,通过精确控制生长工艺,在半导体或者绝缘基底上制备出高质量石墨烯、硅烯、锗烯、以及它们的面内互联或者面间叠层的异质结构,为物性测量和器件单元的构建提供高质量材料。并利用多种先进的技术,原位测量和分析材料的精细结构和本征物性,结合理论计算,在单原子层次上探索和理解这些新型二维材料及复合结构的形成机理、能带结构、输运性质及可能的新奇量子行为。本项目的实施将有望取得具有国际重要影响的成果,为新型二维晶体材料及复合器件单元的构筑以及在未来信息器件的应用提供重要的科学依据。
实现了多种新型二维晶体材料的可控生长,包括单元素的类石墨烯材料及多元素的MX2,MX3等新型体系,对材料新物性的探索,新原理器件的构建等方面取得重要成果。针对材料生长的一些关键技术问题,产生了核心自主知识产权,提高了新型二维晶体材料的可控生长方面的整体研究水平,促进对半导体二维原子晶体材料的量子特性以及新原理器件构建的研究,这对于保持二维原子晶体材料领域的国际影响力具有重要影响。发表SCI收录论文20余篇,包括Nature Materials 1篇, Advanced Materials 4篇, Nature Communication 1篇, Nature Physics 1篇, Nano Letters 3篇,Advanced Electronic Materials 1篇。国际学术会议特邀报告8次;国内学术会议特邀报告10次;申请发明专利8项。项目负责人获得了国家基金委杰青(2017),科技部中青年科技创新领军人才(2018),国家“万人计划”科技创新领军人才(2019)等荣誉。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
应力致石墨烯类二维晶体奇异形变/相变特征及其机制研究
二维晶体材料上低缺陷密度氮化镓生长及物性研究
二维硼的生长和物性探索
二维有机晶体膜的控制生长、结构表征与性能研究