Rational catalyst design is of significant importance to the development of catalysis. Although it is one of the ultimate goals of scientists working on catalysis, update there has been no effective methodology that is based on the prediction of theoretical calculations for rational catalyst designs. This proposal focuses on the investigation of developing such a methodology. It consists of (1) estimating quantitatively the influence of intermediate surface coverage on BEP relationship and activity trend on metals (i.e. the shape change and the peak shift of volcano curve); (2) investigating its effect on the rational design of real catalysts and its related catalytic principles; (3) establishing the BEP relationship for metal oxides, thus leading to a solid foundation for building a “genetic” data base for materials screening; (4) developing both the theory and application for the chemical potential kinetics as well as for the step-kinetic model; (5) creating kinetic models for catalysts with multi- active sides and applying the kinetic models to catalyst design with multi-phases, including estimating catalyst models with different multi-phases and obtaining the BEP relationship for multi-phase systems and kinetic models for catalytic systems with multi-phases. The methodology will be applied to the oxidation of NO, selective reduction of NOx and the hydrogenation of substituted nitrobenzene and other important reactions, and a strategy for designing the component and the structure of new catalysts will be proposed. It will establish a foundation for developing some catalysts for real industrial applications.
催化剂的理性设计对催化领域的发展具有重要的意义,是催化工作者的终极目标之一,但到目前为止仍没有一个很好的基于理论计算的方法可用于催化剂的设计。本项目致力于建立和发展一种基于第一性原理理论计算的催化剂理性设计的方法,包括:(1)定量评估表面物种覆盖度对金属体系BEP关系和催化活性趋势的影响(火山型曲线顶点的位移和形状的变化);(2)探究其在实际催化剂的理性设计中的应用和相关的催化原理;(3)建立金属氧化物体系中的BEP关系,从而为材料筛选“基因库”的建立奠定基础;(4)发展化学势和两步模型在表面动力学里的理论和应用;(5)建立多位点的动力学模型和多相催化剂设计中的应用,其中包括评估不同的多相催化剂模式,建立多相体系的BEP关系和多相体系的动力学模型。针对NO氧化、NOx选择性催化还原、取代硝基苯加氢等重要的反应过程,提出新型催化剂体系组成、结构设计的策略,为开发具有可实用催化剂体系奠定基础。
催化剂的理性设计不仅可以显著降低催化剂制备的成本,同时还能加速新催化剂体系的发展,它的重要性对催化领域乃至整个化学界的意义都是不言而喻的。本项目结合密度泛函理论计算和微观动力学分析,研究催化反应活性基本理论和规律,,取得了一些研究成果:1)提出了一种快速确定最佳催化剂的描述方法:化学势折中模型,该方法不仅建立了最佳催化剂与反应体系基本热力学间的关联关系,为单一位点类型催化剂的高通量快速筛选提供了新的依据,而且揭示了决定最佳催化活性数值(火山型曲线顶点高度)的关键决定因素:β系数(BEP关系截距项)。2)在方法学上发现了一种多组分金属体系“活性-结构”关系的快速定量描述方法,并提出了一种基于敏感度分析的梯度上升法数学框架,初步实现了催化剂的自动寻优。3)根据理论模拟所给出的催化剂组成策略,设计和优化催化剂的组成,开发出两种应用前景较好的Mn基低温NH3-SCR催化剂。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
硬件木马:关键问题研究进展及新动向
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基质—稀土离子能量传递理论及第一性原理计算
基于量子化学计算的不含金属的氢化催化剂的理性设计
基于第一性原理的F-T合成反应网络研究和催化剂的分子设计
固体理想强度的第一性原理计算研究