Atmospheric turbulence is an important factor that limits the performance of free-space optical communications and laser radar system, and one can reduce turbulence-induced perturbation through manipulating the coherence and polarization properties of laser beam. This project proposes to study the modulation of the coherence structure of vector beam and its interaction with turbulent atmosphere. We will mainly study the following four aspects. First, we will propose the theory and build the experimental setup for constructing the coherence structure of vector beam dynamically, then generate vector beam with novel coherence structure, and study the new physical effects induced by novel coherence structure and the applications of coherence structure in shaping and designing the focused light field. Second, we will develop new methods for measuring the coherence structure of vector beam, and realize experimental measurement of the magnitude and phase of the coherence structure, then explore the evolution properties of coherence singularity and its application in light field inversion. Third, we will explore the principle of the interaction of vector beam with turbulent atmosphere and analyze the evolution laws of beam’s statistical properties, then we will explore the possible way for further reducing turbulence-induced beam scintillation index and beam wander through modulating the coherence structure and the state of polarization of light beam together. Last, we will explore the principle and method of encoding the image information into the coherence structure of vector beam, and explore the possible way to overcome atmospheric turbulence and realize propagation and recovery of image information. The research of this project will enrich the technologies for light field modulation, and exert the respective advantages of polarization modulation and coherence structure modulation. This project will also provide new theory and technology supports for many applications, such as free-space optical communications, transmission of image information, and optical manipulation.
大气湍流引起的光束扰动是制约自由空间光通信、激光雷达等系统性能的重要因素,调控光束相干和偏振特性可以有效降低湍流扰动。本项目拟开展矢量光束相干结构调控及其与湍流大气相互作用研究。主要研究:1)矢量光束相干结构动态调控原理和实验系统,产生新型相干结构矢量光束,研究相干结构调控引发的新颖效应及其在焦场整形/设计中的应用;2)矢量光束相干结构测量方法,实现相干结构振幅和位相测量,研究相干奇点演化及光场反演;3)新型相干结构矢量光束与湍流大气相互作用机理,分析光束统计性质演化规律,研究相干结构和偏振共同调控进一步降低大气湍流引起的光强闪烁、光束漂移等效应;4)基于矢量光束相干结构调控的图像信息加载原理与技术,探索克服湍流扰动实现图像信息传输和恢复方法。本项目的研究将丰富光场调控技术,实现偏振和相干结构调控的优势互补,为自由空间光通讯、图像信息传输、光学微操控等领域的应用提供新的理论和技术支持。
偏振和相干性是光束的两大重要属性,调控光束的偏振或相干性都可以实现抗环境扰动,在自由空间光通讯、激光雷达等领域具有重要的应用。以往人们对光束的偏振和相干性大多数是分开研究的。本项目结合偏振和相干性调控的各自优点,开展矢量光束相干结构调控及其与湍流大气相互作用研究。我们提出矢量光束相干结构调控与测量新方法,产生了多种新型相干结构矢量光束,揭示了相干结构引发的光束自聚焦、自修复、自导引、自整形、抗退偏振等效应。我们开展了新型相干结构矢量光束与湍流大气相互作用研究,发现相干结构和偏振调控可以有效的降低大气湍流引起的光斑漂移、光强闪烁等效应。我们把光束相干结构调控成功应用到光学图像加密、抗湍流远场成像、浑浊介质“鬼”成像、突破经典衍射极限、光学轨道角动量调控、扭曲位相产生与测量、单轴晶体折射率参数测量、微粒捕获等。本项目研究成果在自由空间光通讯、复杂环境信息安全传输、光学成像、微纳操控等领域具有重要的应用前景。本项目在Physical Review Letters、Opto-Electronic Advances、Nanophotonics、Applied Physics Letters、Optics Letters、Physical Review Applied、Physical Review A、Optics Express 等国内外权威刊物发表学术论文152篇,其中邀请综述论文14篇,所发表论文被引用800多次,获国家发明专利授权13项。本项目培养博士毕业生8名,硕士毕业生13名。项目负责人受邀做国内外会议邀请报告19次,组织光场调控相关会议17次。项目负责人因其在光场相干结构调控及应用方面的突出成果入选2020年美国光学学会会士,并且受邀担任多个国际刊物的主编、副主编、专题编辑和编委。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
内点最大化与冗余点控制的小型无人机遥感图像配准
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据
部分相干矢量光束的关联结构调控与传输特性研究
新型部分相干光束合成机理与方法及其抗大气湍流特性研究
特殊相干结构光束大气湍流传输及其在光学成像中的应用
部分相干矢量光束紧聚焦特性及其焦场调控研究