Small airfoil aircrafts have wide application prospects in military and civilian products. However, the air flow with a high Reynolds number causes the aeroelastic vibration of wings, which not only increases the energy consumption, but also leads disadvantages of flight control. Based on this, this project proposes the idea of piezoelectric energy harvesting and vibration suppression for aeroelastic vibration of small airfoil aircrafts. A mathematical model of the characteristic of aerodynamic elastic vibration with multi-scale and multimodal is established by the method of coupling CFD (Computational Fluid Dynamic) and CSD (Computational Structural Dynamics). Configurations of piezoelectric energy harvesters and vibration suppression systems are designed. The energy harvesting and storaging process and the vibration suppression process are simulated by the fluid-solid-electric multi-physical field coupling. The characteristics and regularity of that the nonlinearity of aeroelastic vibration affect performances of energy harvesters and vibration suppression system are investigated. The control algorithm is written, and adaptive control circuits for energy harvesting and storaging and vibration suppression are designed. Prototypes of energy harvesters and vibration suppression systems are developed, integrated and encapsulated. A wind tunnel test platform is built. The system dynamic response and output characteristics of the aircraft are tested to verify the correctness of the theoretical modeling and numerical simulation analysis. The mechanism of energy harvesting and vibration suppression of small airfoil aircraft under aeroelastic vibration is revealed. The research results of this project will provide a strong theoretical and technical support for the smooth and stable flight control of a stand-alone small airfoil aircraft or clustered small airfoil aircrafts.
小型翼型飞行器在军事和民品上都有广泛的应用前景。然而,高雷诺数的空气流动使机翼产生气动弹性振动,不仅增加能耗,还引起飞控弊端。基于此,本项目提出面向小型翼型飞行器气动弹性振动的压电俘能与振动抑制的思想。采用耦合CFD和CSD的方法建立多尺度、多模态的气动弹性振动特性数学模型;设计压电俘能和抑振系统的构型,对其俘能/储能过程和振动抑制过程进行流-固-电多物理场耦合模拟,探索气动弹性振动非线性对俘能器的性能和抑振系统的性能影响特点和规律;编写控制算法,设计俘能/储能与振动抑制的自适应控制电路,研制俘能与抑振系统的样机并进行结构集成封装;搭建风洞试验平台,测试飞行器的系统动力学响应和输出特性,验证理论建模和数值模拟仿真分析的正确性;揭示小型翼型飞行器在气动弹性振动下俘能与抑振的机制。本项目的研究成果将为小型翼型飞行器的单机和集群式平稳飞控提供有力的理论和技术支持。
小型翼型飞行器在军事和民品上都有广泛的应用前景,本项目提出了面向翼型飞行器的,基于空气弹性振动和机械振动复合振动模式下的俘能与振动抑制机制与方法研究。探索了小型翼型飞行器机翼的气动弹性振动特性,对涡激振动、尾流激振、颤振进行了数学建模与数值模拟;推导了基于准稳态、非定常和动态失速模型的压电俘能器系统数学模型。设计并研制了多种构型的翼型颤振俘能器样机。另外,从压电效应和叠堆致动器工作原理,建立了压电梁振动的主动控制结构模型,实现了振动结构的系统辨识,并基于线性控制方法设计了控制器,探索了振动抑制的自适应控制算法、振动抑制控制系统的数学建模与优化设计的理论方法。研制了不同的集成型压电自感知执行器,提出了消除电场干扰的新方法。设计并研制了俘能/储能与振动抑制的自适应控制电路;通过模拟分析获得了俘能与抑振过程的流-固-电多物理场耦合特性,搭建了非线性气动弹性振动下压电俘能/储能实验系统,通过实验验证了各个理论分析的正确性,获得了气动弹性振动非线性对翼型俘能器的性能和抑振系统的性能影响特点与规律。到目前为止,本项目共发表了SCI论文18篇,其中一区Top期刊论文7篇;并在《中国机械工程》和《力学学报》两个中文权威期刊分别发表了1篇论文;获得国家发明专利授权3项;培养了2名博士和3名硕士。本项目的研究结果为气动弹性振动俘能系统的开发利用,以及机电装备的振动抑制提供了理论和技术支持。期望在未来三至五年内能够将振动抑制技术应用于无人机激光光电吊舱或者其它精密智能装备中,将带来一定的经济效益和社会效应。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
敏感性水利工程社会稳定风险演化SD模型
空气电晕放电发展过程的特征发射光谱分析与放电识别
耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响
压电复合结构振动俘能与主动控制同步实现的理论与试验研究
小型振动压电发电机气流致振发电技术
柔性支撑并联机构振动特性及抑振控制研究
翼型失速颤振的基本性质研究