Food texture is of important significance to the nutritional diet and dietary health of human beings. Also, it is closely related to the food development, storage and transportation. The evaluation of food texture is an important way to understand the texture of food materials. The most common ways for food texture evaluation include sensory evaluation and instrumental measurement. However, these methods are far from ideal. Firstly, the sensory evaluation is time-consuming and heavily relies on the evaluator, which is a human being, thus the results are subjective and unstable. On the other hand, instrumental measurement methods may offer objective and stable results, yet the accuracy of the results is hard to guarantee as it depends upon elaborately simulating the chewing process and oral environment, which currently is a unsolved and challenging task. With her expertise and experience in this research filed, the applicant sought to solve the above-mentioned problems. The objectives are twofold. Scientifically, the goal is to develop a reliable methodology for better simulating the chewing process and oral environment based on numerical simulation and analysis techniques. This could greatly benefit the research community as it provides a sound scientific base for universal food texture evaluation. Practically, the ultimate objective is to construct a biomimetic masticatory texture analysis system with optimal bionic components, control software, and optimized system parameters. In the end, the reliability of the simulative chewing process established by the system will be validated by testing typically tested food materials. The implementation of this project provides theoretical basis and available equipment for accurate evaluation of food texture. It has important scientific significance and application prospect, and also provides reference for human chewing mechanism research.
食品质地对人类的营养膳食和饮食健康有重要意义,同时与食品的研发、贮藏和运输密切相关。食品质地评价是了解食品物料质地的重要途径。当前,对食品质地的评价主要采用感官评价法和仪器测量法,然而,前者费时费力,且评价结果主观性强,结果不稳定;后者多属于咀嚼模拟测定,评价结果与人类感知相差较大,其根本原因在于对咀嚼过程和口腔环境的模拟与人类咀嚼真实情况有较大差异。为解决上述问题,本项目拟在前期工作基础上,基于数值仿真技术合理整合仿生要素,设计仿生硬件和控制软件,并优化系统参数,构建贴近于人类咀嚼的仿生咀嚼食品质地分析系统。最后,通过该系统对典型食品物料的质地测试,评价系统模拟咀嚼的可靠性。本项目的实施,为食品质地的准确评价提供理论依据和可利用设备,具有重要科学意义和应用前景,同时也为人类咀嚼机理研究提供参考和借鉴。
食品质地对人类的营养膳食和饮食健康具有重要意义,同时与食品的研发、贮藏和运输密切相关。食品质地评价是了解食品物料质地的重要途径。当前,食品质地的评价主要采用感官评价法和仪器测量法,然而,前者费时费力,且评价结果主观性强、稳定性差;后者多属于咀嚼模拟测定,评价结果与人类感知相差较大,其根本原因在于对咀嚼过程和口腔环境的模拟与人类咀嚼真实情况有较大差异。本项目首先基于逆向工程和计算机辅助技术,构建了上下颌牙面、磨牙、切牙的咀嚼运动模型,利用有限元法模拟以上三者对食品物料的破碎效果,结果表明上下颌牙面、磨牙会产生更大的剪切应力和密塞斯应力;切牙会产生更大的主应力;咀嚼速率越大,破碎效果越好。上述结果进一步完善了人类咀嚼的机理。在此基础上,本项目基于有限元流固耦合法,探究在唾液参与下食品物料动态咀嚼破碎过程,结果表明唾液的包裹使得物料在受到较小应力就可以发生破碎。上述结果揭示了唾液在人类咀嚼过程中的作用。最后,本项目设计硬件装置和控制软件,完成对关键部件的运动机制分析和振动模态分析,模拟人类下颌运动和口腔环境,构建了仿生咀嚼食品质地分析系统。同时,本项目利用该系统评价了六种典型食品物料的质地特性,结果表明硬度、脆度、弹性、内聚性、咀嚼性的质地特性结果与感官评价结果的相关系数分别为0.995、0.974、0.994、0.928、0.989(p<0.01),均高于通用食品质构仪的评价结果。上述结果表明仿生咀嚼食品质地分析系统的可靠性优于通用食品质构仪,更接近人类感官评价。本项目的实施,为食品质地的准确评价提供了理论依据和可利用设备,具有重要理论意义和应用前景,同时也为口腔医学、临床营养学、特殊膳食食品领域的研究提供参考和借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
仿生咀嚼过程中食品物料力声行为及质地感知评价机制
口腔偏侧咀嚼运动对相关脑功能区的影响及其机制研究
咀嚼运动的中枢去抑制调节环路
基于肌电相干性分析的脑卒中后吞咽障碍咀嚼运动的神经耦合机制