考虑一般约束条件下的消费投资决策模型研究

基本信息
批准号:11471276
项目类别:面上项目
资助金额:60.00
负责人:许左权
学科分类:
依托单位:香港理工大学深圳研究院
批准年份:2014
结题年份:2018
起止时间:2015-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:易法槐,李迅,李迅,韩晓茹,管崇虎,侯丹琳
关键词:
投资组合HJB方程最优投资策略自由边界问题金融数学
结项摘要

This research project contributes to the theory of optimal consumption-investment in intertemporal economies. The optimal consumption-investment problem studies the decisions of an agent endowed with some initial wealth who seeks to maximize the expected utility of consumption. These decisions are the consumption rate and the allocation of his wealth to risky and risk-free assets (known as investment strategy) over time. The classical papers of Samuelson (1969) and Merton (1969, 1971) began the study of dynamic optimal consumption-investment problems. Models involving general constraints have since been investigated. In this project, we plan to study the optimal consumption-investment problem, in which the investment strategy is constrained and the consumption rate is subject to an upper and/or lower boundary at any time. The boundaries are assumed to be wealth dependent. An example of an investor that resembles the aforementioned agent is an investment firm with cash flow commitments that is subject to regulatory constraints. We will consider the problem in the context of the standard Black-Scholes-Merton market. The goal of this project is to determine the value function of the problem, to examine how smooth it is, and to determine the optimal investment strategy. The main tools are coming from the theory of differential equations, particularly the theories of free boundary and viscosity solution for differential equations. We will first demonstrate that the value function is the unique constrained viscosity solution of the associated Hamilton-Jacobi-Bellman equation. We will then prove that the viscosity solution of the equation is smooth. Finally, the optimal consumption rate and investment strategy are provided in feedback form of the wealth. The international financial crises that occurred in the past few years has forced governments to impose a series of strict regulations on investment and trading to eliminate or mitigate financial crises. Although extensive research on the optimal consumption-investment problem has been conducted, research on this problem under the constraint that the consumption rate is subject to an upper and/or lower boundary at any time is scant. Consequently, this research topic has not been sufficiently explored. By establishing and analyzing new models that can be used in this field, we expect that the findings of this research project will help investors and financial institutions obtain a more comprehensive understanding of financial investment and risk control.

本项目考虑连续时间下最优投资消费模型。此问题研究投资者面临选择最优的投资消费策略以最大化其期望消费效用。决策变量为消费策略以及投资策略。Samuelson 和Merton开创了动态最优投资消费问题的研究。此后大量文献对此问题进行了深入的研究。本项目将采用 Black-Scholes模型假设,对消费率依赖于财富上下界限制的投资消费问题进行研究。常见的例子包括基于监管要求投资者只能把部分财富投资到风险资产上面的情形。项目目标是决定值函数并给出最优投资消费策略。主要工具来自随机控制以及微分方程领域,特别是黏性解及自由边界理论。我们希望证明值函数是相应的 HJB方程唯一的光滑黏性解,最后得到一个反馈形式的最优投资消费策略。近期发生的金融危机使得国际社会加强了对投资消费的监管措施,以减小甚至避免金融危机重来。我们希望本项目的研究成果能够帮助投资者进行更合理的投资消费,并给监管部门提供一定参考意见。

项目摘要

经典的期望方差理论及期望效用理论是现代金融学的两大基石。与之相关的投资组合问题一直是金融领域研究的重点、核心。本项目主要是研究带有约束条件的最优消费投资问题,以及与之相关的偏微分方程及随机控制问题。项目研究了带有下约束、上约束、以及综合约束条件的消费投资模型,同时考虑了更为广泛的类似问题。通过对此类问题的研究,对已有的自由边界理论和随机控制理论进行了进一步的改进和发展。本项目按照原计划执行了研究工作,完成了既定目标,已经发表及接受了十五篇文章,获得了一些重要成果。依托本项目,培养了两位博士研究生。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
2

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
3

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
4

多源数据驱动CNN-GRU模型的公交客流量分类预测

多源数据驱动CNN-GRU模型的公交客流量分类预测

DOI:10.19818/j.cnki.1671-1637.2021.05.022
发表时间:2021
5

理财建议可以当做金融素养的替代吗?

理财建议可以当做金融素养的替代吗?

DOI:
发表时间:2017

许左权的其他基金

相似国自然基金

1

碳排放约束下考虑消费者低碳意识的企业生产运营决策研究

批准号:71401067
批准年份:2014
负责人:洪兆富
学科分类:G0109
资助金额:23.00
项目类别:青年科学基金项目
2

考虑时空约束的地表温度降尺度模型研究

批准号:41901308
批准年份:2019
负责人:陈虹
学科分类:D0113
资助金额:24.00
项目类别:青年科学基金项目
3

中国能源消费周期波动研究:基于多部门动态随机一般均衡模型

批准号:71203233
批准年份:2012
负责人:吴利学
学科分类:G0306
资助金额:21.00
项目类别:青年科学基金项目
4

经济增长与收入分配差距:基于消费者异质性的动态一般均衡模型

批准号:71803153
批准年份:2018
负责人:王玮
学科分类:G0305
资助金额:17.00
项目类别:青年科学基金项目