On-chip composite microcavities based on the metal nano-particles and photonic crystal microcavity possess more strong double-enhanced localized optical filed and higher figure of merit (Q/V), compared with pure photonic crystal microcavities or pure localized surface plasmon polariton resonances. However, to date, it is a great challenge to fabricate the composite microcavities, which has restricted their practical applications. In this project, a controllable fabrication method for the composite microcavities is proposed based on the nanomanipulator. The technology based on the nanomanipulator can be used to freely manipulate the position and the orientation of the nano-particles on the nano-scale, thus it can overcome the research bottleneck of the composite microcavities. Based on this, the applications research of new physics, new effect, and new device can be carried out by use of the platform of the composite microcavities, including the physical mechanism of the coupling between the surface plasmon polariton resonance modes and the photonic crystal microcavity modes, and the distribution mechanism of the electric magnetic field inside the composite microcavity. Moreover, the fluorescent molecules, the quantum dots, and the color centers can also be manipulated based on this technology of the nanomanipulator, so the enhanced fluorescent emission of the single molecule and the highly efficient modulation of the single photon can be achieved based on the composite cavities. The on-chip composite microcavities will provide novel confined optical filed, and will play an important role in the related research fields, such as highly-integrated photonic devices, ultra-sensitive detection, and quantum optics, etc.
芯片上金属纳米颗粒-二维平板光子晶体复合微腔与单纯的光子晶体微腔或单纯的局域表面等离激元共振相比,具有“双增强”的新型局域光场和更优的综合品质(Q/V),然而复合微腔的制备一直面临很大挑战,限制了它的实际应用。本项目计划发展一种基于纳米机械手的新型微纳操控方法,对纳米颗粒的位置和取向实现纳米级精度的操控从而制备复合微腔,克服片上复合微腔研究面临的技术瓶颈;在此基础上,利用片上复合微腔平台开展光场调控新物理、新效应和新器件应用的研究,具体包括揭示等离激元模式与光子晶体微腔模式耦合的物理机制和复合微腔内的电磁场分布规律;利用所发展的技术操控荧光分子、量子点、色心等,实现单分子荧光增强和单光子发射的高效调控。芯片上复合微腔的实现将提供新型局域光场,在高集成度全光纳米器件、超灵敏探测和量子光学等相关研究领域发挥重要作用。
围绕复合微腔设计和复合纳米结构制备问题,通过多个结构参数的计算,设计出具有比单纯的光子晶体微腔和单纯的金属颗粒更高综合品质的复合微腔;在实验上,通过在聚焦离子束刻蚀系统中引入纳米机械手,成功制备出量子点与片上纳米结构的复合体系,并应用于片上超小的单向性发射光源;探究了拓扑光子晶体在片上集成器件的应用研究。主要研究成果如下:.(1)实现了最高综合品质(Q/V)为8.4×10^6(λ/n)^(-3) 的芯片上L3型光子晶体微腔与金属纳米天线片上复合纳腔体系,是单纯L3型光子晶体微腔的25倍,是单纯金属纳米天线的60倍。.(2)为提高复合微腔鲁棒性,提出了拓扑光子晶体-表面等离激元纳米天线复合微腔体系,与已有的拓扑微腔相比,实现了最高综合品质的拓扑腔,并且首次将拓扑光学腔从弱耦合推广到强耦合领域的应用。.(3)在FIB系统中发展出利用纳米机械手制备复合纳米结构的精准制备技术,制备出了片上抛物面型纳米结构与量子点复合结构体系,并在实验上实现了具有超小尺寸、高收集效率、单向发射片上光源。.(4)将有限元方法与多种优化算法结合,发展出应用于设计芯片集成的片上纳米光子器件的智能算法,实现了最小尺寸的基于智能算法片上波长路由纳米器件、偏振路由纳米器件。探究了拓扑光子晶体的应用,实现了基于耦合谐振环体系的拓扑相变、基于合成维度的拓扑彩虹微纳器件等。. 在该项目支持下,发表论文30篇,包括Physical Review Letters 3篇,Light Science & Applications 1篇,Optica 1篇,Advanced Optical Materials 2篇,Nanophotonics 3篇,Advances in Optics and Photonics 1篇等;1篇审稿阶段Nature Communications 1篇,已得到三位审稿人的积极评价;审稿阶段Physical Review Letters 2篇。被授权国家发明专利2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
光子晶体微腔在探测器和QED上的应用研究
二维光子晶体-金属纳米天线复合微腔的耦合共振机理及光谱增强技术研究
基于金属纳米颗粒-绝缘体复合材料的平板光子晶体的制备、带隙调制及机理研究
聚合物中有序掺杂金属纳米颗粒制备三维光子晶体