Due to the presence of information exchange and cooperation among multi agents, the traditional methods of fault estimation and active fault-tolerant control for an individual system design are difficult to be applied directly to multi-agent systems. Communication noises and switching topology will make performance degradation of fault estimation and active fault-tolerant control, even effectiveness. To this end, the study of this project is to carry out the distributed fault estimation and active fault-tolerant cooperative control for multi-agent systems. Based on the relative output estimation error obtained from the communication topology of multi-agent systems, the distributed robust fault estimation are studied to enhance robustness and accuracy of fault estimation for multi-agent systems subject to modeling errors, external disturbances and communication noises. Using fault information, a multi-objective fault-tolerant control and active fault-tolerant cooperative control under switching topology are proposed to guarantee consensus of multi-agent systems with faults. Active fault-tolerant control of flight control systems of unmanned aerial vehicle (UAV) formation is studied to improve flying qualities. Through this project, the innovative theoretical research results of distributed fault estimation and active fault-tolerant cooperative control for multi-agent systems are obtained and used in UAV semi-physical simulation platform for application verification, aimed at providing a theoretical basis and technical support for the UAV formation flight safety.
多智能体之间存在信息交互和相互协作使得传统针对单个系统设计的故障估计和主动容错控制方法难以直接应用到多智能体系统。多智能体系统通讯噪声和切换拓扑会使得故障估计和主动容错控制性能下降,甚至失效。为此,本项目开展多智能体系统的分布式故障估计和主动容错协同控制及其在无人机编队中应用的研究。依据多智能体系统通讯拓扑得到相对输出估计误差,针对带有建模误差、外界干扰、通讯噪声等不确定性的多智能体系统,设计分布式鲁棒故障估计提升其鲁棒性和准确性;提出基于故障信息的多目标容错控制及切换拓扑下主动容错协同控制确保故障下多智能体系统一致性;研究无人机编队飞行控制系统主动容错控制,提升其飞行品质。本项目致力于取得新颖的多智能体系统分布式故障估计和主动容错控制理论研究成果并在无人机半物理仿真平台进行应用验证,为无人机编队安全飞行提供理论依据和技术支撑。
本项目针对多智能体系统,建立了一套较为完整的分布式故障估计和主动容错控制理论研究框架,并将部分理论成果应用到了飞行器编队容错控制平台。主要研究成果如下:(1)对模型不确定多智能体系统的执行器和传感器故障进行建模,分析了这两类故障的可估计性,同时提出了分布式故障估计观测器设计方法;(2)系统研究了多智能体系统模型不确定性与通讯噪声对分布式故障估计性能影响分析,提出了带有可调参数的分布式故障估计方法和基于有限时间内收敛的分布式故障估计方法;(3)研究了基于多目标设计的多智能体系统的主动容错控制方法,进一步考虑了切换拓扑下故障估计和主动容错控制;(4)搭建了无人机编队飞行控制平台,构建了故障注入模块,考虑了执行器的损伤故障和偏差故障。针对该编队飞行控制系统,故障估计观测器获取故障信息,并基于故障估计,设计主动容错控制器,提升编队系统的可靠性能。.在该项目的资助下,项目负责人以第五完成人获2018年国家自然科学奖二等奖1项。项目负责人以第一作者在国际出版社Springer出版学术专著1部,发表了学术期刊论文23篇,其中被SCI检索的论文17篇,发表国内外学术会议论文7篇。在项目执行期间,授权国家发明专利11项,并还有3项专利处于受理阶段。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
内点最大化与冗余点控制的小型无人机遥感图像配准
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
具有未知非线性信息的多智能体系统的故障估计与协同容错控制
噪声环境中多智能体系统的协同控制及其在卫星编队飞行中的应用
多智能体系统主动容错控制及其容错能力分析
主动面智能故障诊断与容错控制研究