Power System is a time-related system, which requires that the generation, transmission, distribution and consumption of power proceed simultaneously and synchronously, and these are controlled jointly based on a synchronous clock. Clock synchronization is one of the key technologies in the construction of smart grid. The existing satellite clock is restricted by national security and it is seldom used directly in significant areas such as power system. Network clock is affected by the time delay of random transmission and it cannot meet the requirement of the self-healing control of smart grid. In this project, we will establish a synchronous clock error model and propose a synchronous clock error detection and correction method, by measuring and analyzing the errors of GPS and BeiDou Satellite as well as the time delay of the network clock. Based on the feature of error mutual compensation among crystal oscillator, satellite clock and network clock, we will monitor the operation state and the error of these clocks in real time, and suggest a clock error correction method. Moreover, based on the synchronization technology of the network clock in the IEEE 1588 protocol, we will build a timing system model for smart grid and design a scheme of smart grid distributed timing system for the clocks. Finally, we will develop a distributed self-control clock synchronous technology and fabricate a time-synchronous clock prototype in the order of 10ns high accuracy. In summary, the study will provide theoretic and technical foundations for the time synchronous system of smart grid.
电力系统是时间相关系统;发电、输电、配电和用电同时进行,需要基于同步时钟,协调统一控制;时间同步技术是构建智能电网的重要支撑技术之一。现有卫星时钟受安全性制约,难以直接应用于保护控制等重要技术领域;网络时钟受随机传输时延等因素影响,不能满足智能电网自愈控制的要求。为此,项目测试和分析GPS时钟、北斗卫星时钟的误差及网络时钟的时延,构建同步时钟误差模型,建立同步时钟误差测量与修正理论,基于本地晶振、卫星时钟和网络时钟误差互补的特点,实时监测各种时钟的运行状态和误差,并提出时钟误差修正方法;研究基于IEEE 1588协议的网络时钟同步技术,构建智能电网时间统一系统模型,设计基于晶振时钟、卫星时钟和IEEE 1588 网络时钟的智能电网分布式时间统一系统的实现方案,开发分布自治的时钟同步技术,研制精度达10ns 级的高精度同步时钟样机。本项目的研究将为智能电网的时间同步系统建设奠定理论和技术基础
电力系统是时间相关系统:发电、输电、配电和用电同时进行,需要基于同步时钟,协调统一控制;时间同步技术是构建智能电网的重要支撑技术之一。现有卫星时钟受安全性制约,难以直接应用于保护控制等重要技术领域;网络时钟受随机传输时延等因素影响,不能满足智能电网自愈控制的要求。理论分析和实验测试北斗卫星时钟、GPS时钟的授时特点和误差分布特点,搭建同步时钟误差分析模型;深入分析具有IEEE 1588协议功能的网络时钟的误差来源,建立网络时钟误差分析的全部时钟信息分布模型、本地时钟信息分布模型和局部带延时的时钟信息分布模型;建立同步时钟误差测量与修正理论,基于本地晶振时钟、卫星时钟和网络时钟误差互补的特点,实时监测各种时钟的运行状态和误差,提出了一种基于全数字锁相环的电力系统高精度同步时钟实现与修正新方法,并分析了卫星时钟和网络时钟分别或同时异常工作情况下,高精度同步授时方案;设计了基于晶振时钟、卫星时钟和IEEE 1588网络时钟的智能电网分布式时间统一系统的实现方案,开发分布自治的时钟同步技术,研制精度达10ns级的高精度同步时钟样机。本项目的研究为智能电网的时间同步系统建设奠定了理论和技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
物联网中区块链技术的应用与挑战
人工智能技术在矿工不安全行为识别中的融合应用
时间序列分析与机器学习方法在预测肺结核发病趋势中的应用
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
常用哮喘动物模型的建立
智能配电网分布式故障自愈理论与关键技术研究
基于拓扑控制的无线传感器网络时间同步理论与技术研究
基于同步测量技术的城市智能电网自适应保护与控制
全集成精确连续时间滤波技术研究