With the advantage of the vortex tube and the ejector, which can use the low enthalpy resource, and the theory of the heat transfer, this project put forward a low-grade heat resource driven R744-[emim][Tf2N] vortex tube – ejector absorption refrigeration system. This system can transfer the energy effectively between different grade resources, decrease the energy consumption and make refrigeration at low temperature condition. This project not only will be complex studied from theory and experimental part, but also can solve some scientific problems, such as the liquid and gas phase equilibrium of R744- ionic liquid at high pressure condition, and the energy separation of vortex tube and the mass and heat transfer in ejector with R744. After theory and experimental research, it is expected to get the lowest cooling temperature and the highest refrigeration efficiency of the vortex tube – ejector absorption refrigeration system driven by low-grade heat resource, and then extend the application area of vortex tube and ejector, as well as the reuse condition of R744. These researches also provide the basic study on the vortex tube with transcritical R744 and analyze the mass and heat transfer rules in ejector. These research studies are good foundations to enrich theory of ejector absorption refrigeration system.
涡流管制冷和喷射器制冷具有有效利用低焓值热源的优点,本项目结合热转换系统原理以及涡流管和喷射器的上述优势,提出一种低品位热驱动的R744-[emim][Tf2N]涡流管-喷射吸收制冷循环,该循环可以实现冷量品位间的高效转换,降低能耗,实现低温制冷。本项目不仅从理论和实验两方面对所提出的循环进行详细研究,而且对该循环所涉及的关键科学问题进行深入研究,即高压条件下R744-离子液体气液相平衡问题、R744在涡流管中能量分离机理以及喷射器中高速流动传热传质机理等问题。通过理论和实验研究,以期在低品位热驱动的涡流管-喷射吸收制冷系统中获得最低的制冷温度和较高的制冷效率,从而拓宽涡流管制冷、喷射制冷应用范围以及R744回收再利用范畴,同时也为跨临界R744在涡流管中能量分离效应以及喷射器中高速流动传热传质机理问题的解决提供了研究基础,为丰富和完善喷射吸收制冷循环的科学理论打下良好的基础。
涡流管制冷和喷射器制冷具有有效利用低焓值热源的优点,本项目结合热转换系统原理以及涡流管和喷射器的上述优势,提出一种低品位热驱动的R744-[emim][Tf2N]涡流管-喷射吸收制冷循环,该循环可以实现冷量品位间的高效转换,降低能耗,实现低温制冷。本项目不仅从理论和实验两方面对所提出的循环进行详细研究,而且对该循环所涉及的关键科学问题进行深入研究,即高压条件下R744-离子液体气液相平衡问题、R744在涡流管中能量分离机理以及喷射器中高速流动传热传质机理等问题。通过理论和实验研究,以期在低品位热驱动的涡流管-喷射吸收制冷系统中获得最低的制冷温度和较高的制冷效率,从而拓宽涡流管制冷、喷射制冷应用范围以及R744回收再利用范畴,同时也为跨临界R744在涡流管中能量分离效应以及喷射器中高速流动传热传质机理问题的解决提供了研究基础,为丰富和完善喷射吸收制冷循环的科学理论打下良好的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
低品位热与动力驱动的喷射/压缩复合制冷循环研究
低品位热源驱动的自行复叠喷射制冷循环研究
低品位热驱动的跨临界CO2-[emim][Tf2N]吸收式制冷循环研究
基于低品位能源驱动的空冷吸收式制冷循环特性及强化吸收机理研究