Organic redox-active materials are one of the most promising types of active materials for next-generation batteries because of the fact that they can be made readily from abundant natural products and their properties can be tuned easily by organic synthesis. However, they have many drawbacks that prevent them from being commercialized, such as low energy and power densities, and short lifetime. Herein, a strategy is proposed to maximize the energy and power densities of organic batteries, which is the building of microporosity in organic active materials. Microporosity is expected to increase the accessibility of the redox-active sites and the diffusion coefficient of the electrolyte ions, thus increases both the specific capacity and rate performance of a battery. To verify this hypothesis, cyclophanes and polycyclophanes with rigid microporosity will be chosen as scaffolds for the attachment of redox-active groups. The effect of the microporosity of the compounds on the kinetics of the electrode reactions will be thoroughly investigated. Stable and flexible polycyclophanes will be further studied as high performance electrode materials, with the possibility of realizing ultra-high rate capability because of their unique microporous structures. Optimization of the interfaces between polycyclophanes and electron-conducting additives will be carried out to help achieve the best performance of the polycyclophane electrodes. Starting from rational molecular design to final product development, the studies proposed herein are highly likely to result in invaluable knowledge and experiences that will guild the trajectory of next-generation high performance batteries.
有机电极活性材料具有来源广泛、合成简单、加工方便、性能可控、绿色环保和可持续发展等优点,是发展下一代高性能电池的最佳选择之一。然而,目前有机电极活性材料的能量密度和功率密度都普遍偏低,且循环寿命较短,远达不到商业化的要求。本项目拟提出通过控制有机电极活性材料的三维化学结构的方法,来调节离子在电极里的扩散系数,提高电极反应的效率和速度,从而提高其能量密度和功率密度。首先,通过分子结构设计,把具有氧化还原活性的有机官能团引入到具有规则孔状结构的环番小分子及其聚合物中,研究不同的官能团和分子结构对其电化学反应动力学参数的影响机制。然后,采用稳定性高和柔嫩性好的聚合物制备电极,通过对导电添加剂的有机改性,研究组分界面性能对电极的电子传导率和机械性能的影响。最后优化电池的制备工艺,开发具有真正应用价值的有机电池。本项目的研究将为可持续发展的新一代电池的开发积累重要的理论知识和实际经验。
有机化合物具有来源广泛、合成简单、加工方便、性能可控、绿色环保和可持续发展等优点。通过合理的分子结构设计,可得到电化学反应可逆、比容量高、热稳定性良好、成本低的绿色有机电池材料。本项目开发了基于四硫代富瓦烯、百草枯、酰亚胺、苯醌等氧化还原单元的有机电极活性材料,研究了这些活性材料的电子结构与空间结构对电池电压、倍率性能和循环稳定性的影响,研究了碳毡、泡沫碳、石墨烯等导电添加剂的制备工艺及其电化学性能,探索了高离子传导率隔膜的分子设计与合成,对高性能有机、可折叠、可穿戴电池的开发积累重要的理论知识和实际经验。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
基于自组装有机微纳半导体的水性可充放电池
高效P-I-N型柔性有机太阳能电池的设计与研究
可交联三维超共轭聚合物的设计及制备
高效全聚合物有机太阳能电池的材料设计与器件优化