Quantum metrology is an interdisciplinary research area between quantum information science and metrology research. The aim of quantum metrology is to achieve the ultimate quantum limit of precision in measurement which is beyond the classical and the standard quantum limits. Also it is to perform precision measurement by using quantum technologies in various tasks. Quantum metrology is a new developing research direction. It can be widely used for various practical problems and also concerns the fundamental problems of quantum physics. The research of this area develops fast and has been attracting a lot of attentions. We propose to do research systematically the quantum metrology. Our research will cover the Heisenberg limit and other variants of quantum limit in precision measurement which is beyond the classical limit and the standard quantum limit. It is also important to know the conditions about quantum states and method of quantum measurement to saturate those limits. Also it is interesting to know the effects of decoherence. We plan to study the quantum limit of precision in studying the fundamental scientific problems such as the relativistic effects and the inflation of universe. In particular, we will also concentrate on the quantum clocks synchronization, pay attention on the practical aspects and the effects of satellite-based quantum clocks synchronization. Here we should consider the effects of gravity of the Earth. We will try to investigate schemes of quantum clocks network. Additionally, we will pay attention on the implementation of schemes of quantum metrology and their demonstration in experiments.
量子计量学是量子信息和精密测量的交叉融合研究方向,主要是利用量子物理和量子信息的原理,以期获得超越标准量子极限的测量精度,并应用量子技术实现各种精密测量任务。量子计量学是一个新兴的领域,有广阔应用前景同时关注基础物理问题,国内外的发展非常迅速。我们计划系统研究量子计量学,涵盖研究超越经典和标准量子极限的海森堡极限和其它量子极限,达到这些量子极限测量精度所需要的量子态和量子测量方法,以及对这些极限有影响的退相干及其它因素。探索各种基础物理科学问题如相对论效应和宇宙暴涨的量子测量极限及测量方案。特别我们以量子时钟比对为重要方向,关心实用化量子时钟比对方案,考虑地球引力影响的星地间时钟量子比对研究,探索下一代量子时钟网络系统所具有的潜在量子优势及各种方案。我们关注量子计量学的实际应用和在各种量子信息实验平台的实验验证和原理演示。
项目主要集中于量子计量学前沿,设计基于量子信息处理的时钟比对方案,特别是星地间量子时钟比对,探索量子计量学超越经典方法的高精度探测和测量方法,特殊量子态制备,探索量子计量学中量子精密测量的量子力学所允许的极限,及海森堡极限,和实验组合作,探索量子多体纠缠的制备,测量以及其动力学性质。研究量子计量学中量子相干、量子纠缠和量子关联在其中的作用,具体科研成果分别为:(a) 海森堡极限是由于量子力学的测不准原理所引起的,我们针对量子力学测不准原理进行了理论上的多方探索,特别针对多基测量得到熵不确定性及量子相干的不等式。量子计量学海森堡极限在于量子态的相干性,其相干大小决定了测量接近海森堡极限的程度,我们就量子相干量化开展了一系列系统的研究,发表多篇文章,最近我们有完成了100页长篇综述文章,正式发表在国际知名刊物Physics Reports上。(b)我们提出了星地间的量子时钟同步方案,设计可消除大气散射的方案并考察其可行性,考虑地球引力相对论效应影响。(c)和实验组紧密合作,在金刚石氮色心系统演示了量子力学熵不确定性不等式,在超导量子比特系统展示多量子比特模拟。。.共发表标注基金支持文章35篇,其中1篇Physics Reports,1篇Phys. Rev. Lett.,其它Phys. Rev. A/B/D系列18篇。另外发表一篇量子关联综述书章节(Springer)。
{{i.achievement_title}}
数据更新时间:2023-05-31
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
煤/生物质流态化富氧燃烧的CO_2富集特性
SRHSC 梁主要设计参数损伤敏感度分析
2017年冬季斯科舍海南极磷虾种群结构变动研究
极区电离层对流速度的浅层神经网络建模与分析
量子信息量子计算前沿问题及其物理实现
量子场论中的前沿问题
量子磁性体系的前沿理论研究
量子计量学中的量子耗散噪声机制及其动力学控制研究