The guidance and control system plays an important role for a hypersonic vehicle in reentry phase. Compared to the traditional guidance and control system design method, translation and rotation coordination control design scheme has advantages in improving the stability and reliability of the whole system. The project aims to improve reliability of hypersonic reentry vehicles. Considering complicated uncertainties and disturbances in reentry phase, modern nonlinear control design methods are introduced to propose a controller that has strong robustness with respect to complicated uncertainties, and can guarantee the stability of the overall system composed by guidance and control loops as well. Firstly, a typical nonlinear system with complicated uncertainties is abstracted from the fully translation and rotation model of reentry vehicle, and a robust control algorithm that is also concise in structure is designed. Then, the obtained theoretical results are used to solve translation and rotation coordination control design problem for a hypersonic reentry vehicle. Finally, considering some feedback information is difficult for a vehicle to measure accurately in practice, the designed control law is improved accordingly, and translation and rotation coordination controller with finite sensory ability is proposed. This project seeks to explore a new way for reentry guidance and control using control theories and methods, and provide important technical supports to our hypersonic vehicles and other vehicles.
制导与控制系统是高超声速飞行器实现成功返回再入大气层的关键。相比传统设计方法,质心/绕质心协同控制在提高系统稳定性和可靠性等方面更具优势。本项目基于对高超声速飞行器返回再入可靠性的需求,综合考虑再入过程中的复杂不确定性,利用现代非线性控制理论,提出一种对复杂不确定性具有强鲁棒性,同时可确保制导与姿态控制系统整体上具有稳定性的质心/绕质心协同控制方法。首先,将飞行器再入质心/绕质心全耦合模型抽象为一类典型的具有复杂不确定性的非线性系统,并提出一种结构简单且具有强鲁棒性的控制算法。之后,利用所得理论结果解决高超声速再入飞行的质心/绕质心协同控制问题。最后,考虑存在不易准确测量状态的情况,对所提出的控制方法进行改进,提出具有有限感知约束的质心/绕质心协同控制方法。本项目力图从控制理论和方法的角度探索飞行器再入制导与控制律设计的新理念、新方法,为我国高超声速飞行器等各类飞行器的研制做重要技术储备。
制导与控制系统是高超声速飞行器实现成功返回再入大气层的关键。相比传统设计方法,质心/绕质心协同控制在提高系统稳定性和可靠性等方面更具优势。本项目基于对高超声速飞行器返回再入可靠性的需求,综合考虑再入过程中的复杂不确定性,利用现代非线性控制理论,提出一种对复杂不确定性具有强鲁棒性,同时可确保制导与姿态控制系统整体上具有稳定性的质心/绕质心协同控制方法。首先,将飞行器再入质心/绕质心全耦合模型抽象为一类典型的具有复杂不确定性的非线性系统,并提出一种结构简单且具有强鲁棒性的控制算法。之后,利用所得理论结果解决高超声速再入飞行的质心/绕质心协同控制问题。最后,考虑存在不易准确测量状态的情况,对所提出的控制方法进行改进,提出具有有限感知约束的质心/绕质心协同控制方法。本项目力图从控制理论和方法的角度探索飞行器再入制导与控制律设计的新理念、新方法,为我国高超声速飞行器等各类飞行器的研制做重要技术储备。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
奥希替尼治疗非小细胞肺癌患者的耐药机制研究进展
基于综合治理和水文模型的广西县域石漠化小流域区划研究
基于改进LinkNet的寒旱区遥感图像河流识别方法
带有滑动摩擦摆支座的500 kV变压器地震响应
基于虚位移概念的变质心再入飞行器精确制导问题研究
变质心航天器高动态姿态机动控制方法
变质心航天器编队飞行协调控制问题研究
弹道导弹弹头变质心机动控制机理研究