All-solid-state sodium-ion batteries (ASS-SIBs) is the next generation large-scale electric energy storage (EES) technology with the characteristics of low cost, high safety and high energy density. However, the cathodic capacity exploitation and cycle life of ASS-SIBs are limited by large impedance and weak stability of solid-solid interface of cathodic materials in ASS-SIBs at room temperature (In this project, cathodic materials include cathodic active material, electronic conductor, ionic conductor and the solid-state electrolyte contacted with material mentioned above). In this project, sodium-ion transport network will be constructed by sodium-ion conductor with low melting point and high ionic conductivity at room temperature, which change point contact of cathodic materials into surface contact between cathodic materials and sodium-ion transport network, decreasing the impedance and improving the stability of cathodic solid-solid interface. On this basis, the influences of stability of the solid-solid interface of cathodic materials will be researched by further characterization and theoretical calculation in this project. Furthermore, based on the theory researched above, the solid-solid interface of cathodic materials will be improved and the electrochemical performance at room temperature of ASS-SIBs will be promoted. This project will provide theoretical guidance and technical auspice for the development and application of ASS-SIBs.
全固态钠离子电池以其低成本,高安全性,高能量密度等特点,成为具有广泛应用前景的下一代大规模储能技术。但是,正极材料(在本项目中正极材料包括活性材料,电子导电剂,离子导电剂及与上述材料接触的固态电解质)固-固界面极大的阻抗和极差的稳定性限制了全固态钠离子电池在室温下的容量发挥和循环寿命。本项目拟利用熔点低,离子电导率高的钠离子导体在正极材料颗粒固-固界面构筑钠离子传输网络,使正极材料颗粒的点接触转变为正极材料与钠离子传输网络的面接触,降低全固态钠离子电池正极材料固-固界面的阻抗,同时提升其稳定性。在此基础上,本项目将对全固态钠离子电池正极材料固-固界面进行表征,结合理论计算,对影响正极材料固-固界面稳定性的因素进行研究,并以此为理论依据,提高界面的稳定性,进一步提高全固态钠离子电池的室温电化学性能,为全固态钠离子电池的开发和应用提供理论指导和技术支持。
在项目执行期间,我们系统地对全固态钠离子电池正极界面对电池性能的作用机制进行了研究,并实现正极离子导电网络的人工构筑,同时探究了影响正极界面的主要因素,具体如下:(a)利用固相合成法成功合成钠离子导体Na3BO3(NBO),并将其添加至全固态钠离子电池正极侧,高温融化后冷却,使其在正极侧颗粒间连续分布,形成离子导电网络,提升正极侧颗粒间的接触面积和界面离子电导率。添加10 %NBO后,全固态钠离子电池在室温下的内阻仅为200 Ω,在0.1 C倍率下首圈放电容量高达108.9 mAh g-1,首周库伦效率达到95 %。循环1000周后,依旧有59.4 mAh g-1的容量,保持率为63.3 %。未添加NBO的全固态电池无法正常工作。(b)通过形貌,物相和结构的原位/非原位表征结果,说明加入NBO后,Na3V2(PO4)3(NVP)正极可以正常充放电,但是NBO在充放电过程中会与NVP正极发生反应,使电极的相组成遭到破坏,降低电池的循环稳定性。(c)通过原子层沉积(ALD)在NVP表面进行包覆层构筑,可以隔绝NBO与NVP的直接接触,抑制了NBO与NVP颗粒之间发生的副反应。利用ALD在NVP表面修饰1nm的ZrO2包覆层后,全固态电池在在室温,0.1C倍率下全固态钠离子电池首周放电容量达到103.1 mAh g-1,循环1000周后,容量保持率高达85.6%。虽然因为ZrO2导电性不佳导致首圈容量略有降低,然而其循环稳定性得到了大幅提升。在此过程中,我们发表SCI论文4篇,中文期刊1篇,培养博士生1人,硕士生2人,目前均以毕业。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
跨社交网络用户对齐技术综述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
钠离子电池新型正极材料的制备及性能研究
钠离子电池用多羰基聚合物/石墨烯复合正极材料的构筑及性能调控研究
固态锂空气电池三维多孔正极界面构筑及电化学机理研究
锂硫电池用氧化物/硫复合正极构筑及电化学性能研究