The development of DWDM technology increases the capacity of optical communication networks, which put forward to higher performance requirements for optical network monitoring module. Optical Filters used in optical performance monitor is the important device that demands to achieve low absorption, high-precision and narrow-band filter. Tunable photonic crystal filters in optical channel monitoring module can effectively improve the detection accuracy and reduce the volume and light loss. Currently, the tunable photonic crystals filter mainly use the magneto-optical, electro-optical, thermal–optical and other photorefractive effect to tune the defect modes in the band gaps, but they exist small tuning range, poor tuning controllability problems. In the project, we propose a tunable filter structure worked in near infrared communication band, and establish a program of adjusting the thickness of air defect layer and the angle of;incidence through micro-mechanical control system. The relationship among defect layer thickness, the incident angle, the location and bandwidth of the resonance frequency are studied in order to meet the requirements of controllable continuous tuning and fast filtering. By studying the effect of thickness disturbance on the transmittance, we aim to design a photonic crystal filter structure which is not sensitive to thickness perturbation in order to reduce the difficulty of the actually prepared. The research adapt to the tunable filter requirements for the future optical channel monitoring module, and is of great significance and practical value to maintain the safe operation of optical networks.
波分复用技术的应用在提高光通信容量的同时,也对光网络的监测模块OPM提出更高的性能需求。滤波器作为OPM中波长分离的关键部件可采用衍射光栅或可调谐光滤波器,要求具备低吸收和高精度窄带滤波特点。采用光子晶体可调谐滤波器能够有效提高检测精度、减小体积和光损耗。目前基于光子晶体的可调谐滤波器主要利用磁光、电光、热光和光折变等效应调谐禁带中缺陷模频率,但存在调谐范围小、调谐可控性差等问题。我们提出一种调节缺陷腔结构变化实现高精度大波长调谐范围的光子晶体滤波器。建立微机械控制系统调节空气缺陷层厚度和滤波器角度方案。研究缺陷层厚度和入射角度与共振模频率位置及带宽的关系,以满足可控连续调谐和快速滤波的要求。通过研究介质膜层厚度的扰动对透射率的影响,设计对膜厚微扰不敏感的光子晶体结构以降低实际制备的难度。本课题研究适应未来光通道监测模块对可调谐滤波器的要求,对维护光网络的安全运行具有重要意义和实用价值。
该项目针对光子晶体可调谐滤波器的设计、制作和应用问题,深入探索了光子晶体的频域叠加效应和共振隧穿效应对光子晶体滤波特性的调控功能,建立了光子晶体空气厚度调谐和入射角度调谐的有效方案,研究了多个光子晶体叠加提升频域宽度的有效途径,为光子晶体滤波器在光纤通信和光通道性能监测等方面的应用提供了理论和实验基础。取得如下成果:.(1)设计工作区域在近红外各光通信波段可精细调谐的一维光子晶体滤波器结构,可实现双通道以及多通道高精度调谐滤波,解决现有滤波器调谐非线性、半高宽不稳定等问题。.(2)研究服从高斯分布的光子晶体膜厚微小涨落对禁带宽度和位置的影响,并通过磁控溅射实验制备光子晶体样品,发现实验结果和理论模拟具有一致性。为了降低膜厚微扰对纳米光子器件性能的影响,提出一种厚度补偿方案,可防止膜层厚度误差的累积,获得更稳定的光学性能。.(3)通过分析计算压电陶瓷的响应时间以及位移放大倍数对位移测量系统分辨率的影响,搭建了基于位移放大的光干涉测量平台。基于椭圆极坐标模型,对压电陶瓷的迟滞特性进行数学建模,研究前馈控制对压电陶瓷迟滞非线性补偿的影响,并构建基于遗传算法的PID复合控制系统。.项目研究期间,发表期刊论文24篇,其中SCI收录15篇;申请发明专利9项,其中已授权4项;培养博士生2人,硕士生12人。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
基于图卷积网络的归纳式微博谣言检测新方法
基于混合优化方法的大口径主镜设计
面向工件表面缺陷的无监督域适应方法
光通信波段的二维光子晶体及其器件
太赫兹波段金属光子晶体缺陷态滤波器的初步研究
基于光子晶体理论的小型电可调谐半导体滤波器研究
构建于光纤端面的液晶光子晶体可调谐滤波器的研究