Coal-bed gas as a clean energy resource is closely related to coal resources. Due to the presence of oxygen in the extraction procedure, there is a hidden safety problems in future separation and purification process. On the basis of preliminary studies, this research achieves O2 activation and then complete deoxidation by using synergetic effect of carbon materials, sulfide and metal, thus completely eliminate the hazard so that entry will be completely safe. Taking advantage of advanced composite optimization technology and optimize their manufacture, the optimum formula of additive system was selected based on the studies on the screening for O2 activation component and sulfide reducing component suitable for metal-sulfide/carbon composites deoxidation catalysts for low concentration coal-bed gas and their performance and on the thermos-oxidative stabilizer system which exerted a synergistic effect. To obtain mutual coupling mechanism and functional regulation law of different functional units, the relationship between composition and the micro-environment of an oxygen deoxygenation catalyst with the deoxygenation properties was studied. Activation modes of O2 on the catalytic deoxygenation agent during the reaction were studied by In-situ observation. The laws of evolution and changes of metal and sulfide with the internal (metals, sulphides and carbon material structure) of catalytic deoxygenation catalysts were examined. Catalytic deoxygenation transformation mechanism were explored. The successful implement of the project not only could settle the problem of environment pollution induced by low concentrations coal-bed methane direct emissions, but also was important social and economic benefits.
煤层气是附存于煤层中的一种优质清洁能源。但抽采过程中由于氧气的存在,使得煤层气在后续的分离提纯过程中存在较大的安全隐患。本研究在前期研究基础上,拟利用炭材料、硫化物和金属三者的协同性,达到对O2活化、进而完成脱氧的目的,从而彻底消除安全隐患。研究在对O2活化组分和硫化物还原组分筛选基础上,利用先进手段对其进行复合和优化,筛选出性能优异的低浓度金属-硫化物/炭材料脱氧催化剂;研究脱氧催化剂的成分和微环境与脱氧性能的关系,获得催化脱氧剂不同功能单元的相互耦合机制及其功能调控规律;利用原位等手段对O2在催化脱氧剂上反应过程中的活化方式和途径进行研究,探讨催化脱氧剂中金属、硫化物和炭材料织构的内在结构对O2活化及转化脱除过程中金属和硫化物形态的变迁规律;探究金属-硫化物/炭材料催化脱氧反应机理。该项目成功实施不仅能够改变目前低浓度含氧煤层气直接排放的现状,而且具有重要的社会及经济效益。
煤层气是在防治瓦斯突出和爆炸的煤矿安全开采过程中被抽采的副产品,是一种新型清洁能源。但在抽采、运输以及利用过程中由于氧气的存在,使得煤层气在后续的分离提纯过程中存在较大的安全隐患。煤层气脱氧是低浓度含氧煤层气得以合理利用的基础。针对项目申请书中的研究目标,本项目采用廉价易得的煤基炭材料、硫化物以及过渡金属,设计和制备出了性能优异的低浓度金属-硫化物/炭材料脱氧催化剂;并运用多种现代技术对所制备的催化剂进行了结构表征,考察了脱氧催化剂的成分和微环境与脱氧性能的关系,获得了催化脱氧剂不同功能单元的相互耦合机制及其功能调控规律;通过考察生成气体的成分的变化,结合催化剂表征结果,明晰了O2在催化脱氧剂上反应过程中的活化方式和途径,揭示了催化脱氧剂中金属、硫化物和炭材料织构的内在结构对O2活化及转化脱除过程中金属和硫化物形态的变迁规律。上述关于高效脱氧剂的制备和改性等关键问题的探讨和研究,对进一步开发新型炭材料高效脱氧剂至关重要,在理论上也是一种有意的探讨,同时为今后新型脱氧剂的分子设计,以及新型脱氧剂制备方法和处理条件的选择,提供了有价值的参考。研制出了一种高效新型金属-硫化物/炭材料复合脱氧剂,脱氧温度显著降低;所开发的Mn-NaS/炭材料脱氧剂在200℃-350℃温度条件下,吨脱氧剂处理含氧15%的煤层气可达70000-100000m3以上。依托基金及相关研究结果,发表SCI、EI收录论文22篇,其中SCI检索20篇、核心期刊2篇;取得申请及授权相关专利12项;培养博士/硕士研究生8名,获奖3项,1人次获得山西省先进科技工作者称号。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
热塑性复合材料机器人铺放系统设计及工艺优化研究
氢化物加氢脱氧法对金属镧靶材的脱氧机理研究
高有机硫煤可控制备金属硫化物/活性炭复合材料及其脱汞性能研究
低浓度含氧煤层气低温液化分离中的安全机理和特性研究
复合型水合物浓缩低浓度含氧煤层气实验研究