Endothelial cells (ECs) are extremely sensitive to gravity changes as the lining of the vessel wall of the body. Studies have shown that weightlessness/simulated weightlessness can affect various functions of ECs, but there is little exploration for its impact on endothelium-dependent angiogenesis capacity. Caveolae and its iconic protein caveolin-1 are widely distributed in vascular endothelium. As the tiny structural domain of ECs plasma membrane, on the one hand, caveolae could perceive the hemodynamic changes caused by weightlessness/simulate weightlessness. On the other hand, it plays various roles in converting the mechanical signal to biochemical signal for the regulation of cardiovascular system. Therefore, the project will integrate gravity physiology research tools, molecular biology method, cell culture, gene knockout animals, in vitro culture of vascular rings, and cell transfection technology, to explore the role caveolae/caveolin-1 playing in the changes of endothelium-dependent angiogenesis capacity caused by simulated weightlessness as well as its regulation mechanism from both in vitro and in vivo levels. This application can deepen the understanding of mechanism change by vascular endothelial function due to weightlessness, and enrich basic theories of associated space medical domain, thus to provide valuable reference for the research of angiogenic diseases in long-term manned space flight in the future.
内皮细胞(ECs)作为机体血管壁的衬里对重力变化极为敏感,研究显示失重/模拟失重可以影响ECs的多种功能,但有关它对内皮依赖性血管生成能力的影响始终未被系统探究。微囊(Caveolae)及其标志性蛋白微囊蛋白-1(Caveolin-1)在血管内皮分布广泛,Caveolae作为ECs质膜的微小结构域,一方面感知失重/模拟失重引起的血流动力学改变,另一方面将力学信号转换为生物化学信号来调节心血管系统的多种功能。因此,本项目将综合重力生理学研究手段、分子生物学方法、细胞培养、基因敲除动物、血管环体外培养、细胞转染技术等,从离体和在体多个水平探讨Caveolae/Caveolin-1 在模拟失重所致的内皮依赖性血管生成能力改变中的作用及调控机制。本项申请可深化对失重致血管内皮功能改变机制的理解,丰富空间医学领域与其相关的基础理论,为今后长期载人航天飞行中血管生成性疾病的研究提供有价值的参考和借鉴。
血管内皮细胞(ECs)对重力变化极为敏感,失重/模拟失重可影响ECs的多种功能,但有关它对内皮依赖性血管生成能力的影响始终未被系统探究。微囊(Caveolae)及其标志性蛋白微囊蛋白-1(Caveolin-1,Cav-1)在血管内皮分布广泛,Caveolae作为ECs质膜的微小结构域,既能感知失重/模拟失重引起的血流动力学改变,又能将力学信号转换为生物化学信号来调节心血管系统多种功能。本项目综合利用重力生理学、细胞分子生物学、基因修饰等实验技术,从不同水平探讨Caveolae/Cav-1对模拟失重所致的内皮依赖性血管生成能力改变的调控机制。结果发现:1、24h模拟失重对HUVEC-C血管生成和迁移能力有明显促进作用;eNOS抑制剂对这种促进作用具有抑制效果;24h模拟失重使HUVEC-C中eNOS mRNA和蛋白的表达量上调,eNOS免疫荧光反应强度增加,eNOS活性增强;24h模拟失重后HUVEC-C中p-eNOS、p-Akt表达上调,这种上调改变可被PI3K的特异性抑制剂抑制。说明24h模拟失重对HUVEC-C血管生成和迁移能力具有促进作用,机制与胞内PI3K/Akt/eNOS信号途径激活有关。2、透射电镜观察显示模拟失重使HUVEC-C质膜Caveolae数量减少、分布改变,Cav-1表达下降,eNOS表达增加,eNOS磷酸化水平提高;模拟失重促使eNOS从Cav-1/eNOS复合物上解离,转位到HUVEC-C胞质中。说明模拟失重所致的内皮细胞迁移和血管生成能力改变也受caveolae/Cav-1/eNOS信号调节。3、模拟失重可使HUVECs 肌动蛋白微丝排布杂乱、RhoA活性下降;借助C3转移酶抑制或siRNA敲低RhoA活性的方式,模仿模拟失重引起的肌动蛋白微丝解聚,出现HUVECs迁移和血管生成能力增强,这与微重力处理的细胞表现相似;通过基因修饰使模拟失重处理的HUVECs过表达RhoA,迁移和血管生成能力则降低;说明RhoA活性改变参与调控模拟失重诱发的与actin重塑有关的HUVECs血管生成反应。本研究初步明确了模拟失重对内皮依赖性血管生成的影响及Caveolae/Cav-1参与调节的细胞学机制,研究成果有助于深化对失重致血管内皮功能改变的认识,丰富空间医学领域与其相关的基础理论,为长期载人航天血管生成性疾病研究提供有价值的参考和借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
低轨卫星通信信道分配策略
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
微囊藻毒素对微囊藻群体越冬和复苏的影响和作用机制
微囊藻毒素在微囊藻群体形成中的作用及机制研究
微囊蛋白-1对创伤后多器官功能障碍中内皮祖细胞功能的调控及其机制研究
内皮祖细胞及内皮细胞膜微囊泡在糖尿病血管病变中的作用及机制研究