With the aging population and improving living standards, heart failure caused by a variety of cardiovascular diseases has become the leading causes of death of the human race. Although heart transplantation has been successful, but because of the severe shortage of donor, the application of artificial heart pump has become a necessary means to save patients with heart failure. At present, the long-term effects of artificial heart pumps in clinical application are not to be optimistic because the wear, friction and sealing of its mechanical bearing may lead to short life, high heat and easy to cause thrombosis and hemolysis. Maglev artificial heart pump has the characteristic of non-mechanical contact which will bring the advantages of no friction, no lubrication, long life and reduce blood damage. However, maglev artificial heart pump is a mechanical,electrical, magnetical, hydraulic coupled integrated blood pump, which is supported by overlay supporting of magnetic bearing and blood flow hydrodynamic bearing, the existing theory cannot meet the requirement of its research, which is the new theoretical problems of its application. To this end, the project intends to establish the supporting Mechanical-Electrical-Hydraulic coupling dynamics model, reveal the magnetic field distribution law and propose a design theory and method of the maglev artificial heart pumps based on blood flow hydrodynamic by studying the supporting characteristics. These results will establish the theoretical foundation for the clinical application of artificial heart pump.
随着人口老龄化和生活水平的不断提高,由各种心血管疾病所导致的心衰已成为人群最主要的死亡原因之一。然而,心脏移植虽取得成功,但供体严重匮乏,因此应用人工心脏泵已成为挽救心衰患者的必要手段。而目前临床用人工心脏泵,其机械轴承的摩擦、磨损和密封导致寿命短、发热大,易引起血栓和溶血,长期、普遍临床不被看好。磁悬浮人工心脏泵以其无机械接触的特点带来转子无摩擦、无润滑、长寿命等优点,消除了机械磨损和摩擦,可降低血液损伤程度。然而,它是集机、电、液耦合的血泵,由磁悬浮轴承和血流动压轴承叠加支承,现有理论已不能满足这种叠加机理下人工心脏泵的研究需要,给其应用提出了新的理论难题。为此,本项目拟研究血流动压下磁悬浮人工心脏泵支承特性,获取人工心脏泵的磁场分布规律,建立血流动压下磁悬浮人工心脏泵支承机电液耦合模型,提出基于血流动压的轴流式磁悬浮人工心脏泵支承的设计理论与方法,为人工心脏泵的临床应用奠定理论基础。
随着人口老龄化和生活水平的不断提高,由各种心血管疾病所导致的心衰已成为人群最主要的死亡原因之一。然而,心脏移植虽取得成功,但供体严重匮乏,因此应用人工心脏泵已成为挽救心衰患者的必要手段。而目前临床用人工心脏泵,其机械轴承的摩擦、磨损和密封导致寿命短、发热大,易引起血栓和溶血,长期、普遍临床不被看好。磁悬浮人工心脏泵以其无机械接触的特点带来转子无摩擦、无润滑、长寿命等优点,消除了机械磨损和摩擦,可降低血液损伤程度。. 本项目通过研究血流动压下磁悬浮人工心脏泵支承特性,获取了人工心脏泵的磁场分布规律,建立了血流动压下磁悬浮人工心脏泵支承机电液耦合模型,提出了基于血流动压的轴流式磁悬浮人工心脏泵支承的设计理论与方法,为人工心脏泵的临床应用奠定了理论基础。. 在Journal of Mechanics in Medicine and Biology、Journal of Vibration and Control、机械工程学报、中国机械工程等发表学术论文32篇,其中SCI收录3篇、EI收录7篇;申请发明专利9件,其中2件已授权;举办国内学术交流会议1次,参与国内外学术会议6次、宣读论文18篇;邀请国外相关教授来本单位进行学术交流2次;培养了博士生3名,硕士研究生11名,其中已毕业博士研究生1名,硕士研究生9名,另外博士生吕许俊获得国家留学基金委资助赴美国弗吉尼亚大学(University of Virginia)联合培养一年。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
双吸离心泵压力脉动特性数值模拟及试验研究
基于混合优化方法的大口径主镜设计
基于抚育间伐效应的红松人工林枝条密度模型
简化的滤波器查找表与神经网络联合预失真方法
植入式磁悬浮人工心脏泵关键技术研究
磁悬浮人工心脏血泵电机及其控制系统研究
人工心脏辅助超声致动血泵数学建模与温升控制
天文望远镜轴系磁悬浮支承低速特性的研究