In ring theory, investigating idempotents and units are usually employed as an important way to study rings. These two types of elements can determine properties of rings in a large extent, and hence can further classify and name the rings. All the good characteristics onwed by this ring class can be applied to investigation of other ring classes, and also is helpful to the computation of K-groups for some rings. Hence, it always is one of the research focuses. This project aims at studying rings generated by idempotents and units, especially, clean rings and *-clean related rings, and inner relations between this ring class and others are also needed to be explored. In specific, there are three aspects: (1) Provide necessary and sufficient conditions for three and four orders structural matrix rings over SRC commutative local rings being strongly clean, and present deeper conclusions for structural matrix rings for order four; (2) Present structure theorems of *-clean rings and uniquely *-clean rings, and characterize idempotents in these two rings; (3) Discuss whether projections in uniquely *-clean rings can be lifted modulo J(R), and give a counter example by combining known results of strongly *-clean rings and *-clean rings.
在环论中,研究环中幂等元和可逆元常常被作为研究环的重要手段。这两种元的构成在很大程度上可以决定一个环的性质,从而可以对环进行分类和研究。这类环的良好特性可广泛应用于其他环类的研究,同时在K-理论中对某些环K群的计算也有很大帮助,因此一直以来是环论学者研究的热点之一。本项目拟对由幂等元和可逆元加法生成的环,特别地,对clean环及*-clean相关环进行特定条件下的刻画及研究,并进一步探索这类环与其它环的内在联系。具体地,主要有以下三方面:(1)给出三阶与四阶SRC交换局部环上结构矩阵环是强clean环的充要条件,并对其上大于四阶的结构矩阵环给出进一步深入的结论;(2)给出*-clean 环和唯一*-clean环的结构定理,并刻画这两种环中幂等元的情况;(3)对唯一*-clean环的投射元是否可以模 J(R) 提升进行讨论,并综合强*-clean环和*-clean环已有结论,致力给出反例。
本项目对由幂等元和可逆元加法生成的一类环——clean环及*-clean环的结构及性质进行研究。在环论中,确定环的幂等元和可逆元并分析环中其它元与这两类元的关系常常被作为研究环性质的重要手段,而clean相关环是幂等元和可逆元理论中的重要组成部分。.本课题在前期工作积累的基础上,对clean环类中两个急需解决的问题展开了研究:(1)结构矩阵环的强clean性。本课题在3阶结构矩阵环的基础上给出了以下结论:若R是交换局部环, θ是集合{1,2,3,4}上的任一拟序关系,且 R是4-SRC环,则M_4 (θ,R)是强clean环当且仅当T_2 (M_2 (R))是强clean环。(2)*-clean环的结构定理。对于该问题,本课题给出一个*-环是唯一强*-clean环的等价条件,并给出几个唯一强*-clean环的例子。具体地,对于*-环R,证明了R是唯一强*-clean环当且仅当R是唯一(强)clean环且R中每个幂等元是投射元,当且仅当R是阿贝尔唯一*-clean环,当且仅当R是左唯一*-exchange环,当且仅当对任意a∈R,存在中心(或唯一一个)投射元e∈R使得e-a∈J(R)。此外,证明了唯一强*-clean环的一些扩张环也是唯一强*-clean环,并特别地对唯一强*-clean群环进行了详细讨论。相关研究成果已在国内外期刊已发表5篇学术论文,其中被科学索引SCI论文3篇。.本课题的结果对clean环相关理论的发展做了一定贡献,尤其是近年来刚提出的*-clean环及其理论。本课题的结论丰富了这些理论的内容,同时也为下一步的研究提供了一些可用的积累。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
基于可拓学倾斜软岩巷道支护效果评价方法
环的相关强clean性
环的clean性及其相关广义逆的研究
稳定度条件与环的正则性、clean性
环上元素的几类广义逆及其正则性、clean 性