Currently substantial focus is directed towards research in life sciences. The complexity of such systems is continually driving the advancement for information technologies to sense specific environments and relay information to an end user. As a result, a new frontier of next generation bio-sensors is emerging from the fusion of modern optoelectronics, material sciences, and biomedicine. Miniaturization and intelligent sensing are two characteristics of future biosensors.Recently, there has been significant interest in developing new classes of optical biosensors based on waveguides at visible wavelength. The aim of this project is to develope sensors with compact size, high sensitivity,and manufacturing scalability.We will design and fabricate advanced sensors working at visible wavelength range. Specifically, the project will include the following parts:(1)The novel waveguide structures such as the supsended waveguides, slot waveguides will be used to increase the propability of the optical field interacts with the analytes. Thus ,the sensitivity for the sensing unit could be increased. (2)A unique one-dimensional photonic crystal nanobeam cavity is introduced to sensing unit since such structure shows significantly strong light-matter interaction. Metal nanoparticles can be incorporated into cavities to provide further enhancement to the fields. (3)Develop a new way to detect the output power instead of the spectrum. By cascading filter units after the sensing unit, we can detect the optical power instead of the specturm. Thus, we can avoid to use the expensive spectrum analyzer.(4) Fabricate and characterize the sensors with sensing unit,power splitters, filtering unit and also the detector on one chip.
对可见光波段的集成光子传感器的研究有着重要的科学意义和广泛的应用前景。本项目以基于聚合物悬挂波导的可见光波段集成型传感系统为研究主题,主要研究: (1)利用具有倏逝场增强效应的悬挂波导等新型纳米光波导结构提高灵敏度;(2)探索作为传感单元的纳米梁腔中光场与物质的相互作用机理,结合纳米槽、金属纳米颗粒,通过强局域场增加光场与待测物质相互作用,提高传感灵敏度;(3) 开展强度探测取代频谱探测的研究,提出在传感单元之后级联分区波导滤波器,再集成波导型探测器的方案,避免采用光谱仪;(4)解决硅基光子传感单元与分束耦合、滤波单元、探测单元等各功能单元器件集成问题以及芯片上不同功能器件的性能干扰与退化问题。最终研制出针对可见光工作波段的强度探测型光波导生物传感芯片及阵列,为实现高灵敏度集成光波导生物传感器的微型化、集成化、多功能化、便携化打下良好的理论和实验基础。
对集成光子传感器的研究有着重要的科学意义和广泛的应用前景。本项目以基于悬挂波导的集成型传感系统为研究主题,主要研究内容及成果包括: (1)利用具有倏逝场增强效应的悬挂波导等新型纳米光波导结构提高灵敏度;(2)研究了作为传感单元的纳米梁腔中光场与物质的相互作用机理。提出了纳米梁腔结合纳米槽,通过强局域场增加光场与待测物质相互作用,提高传感灵敏度的方案;(3) 开展强度探测取代频谱探测的研究,提出在传感单元之后级联分区波导滤波器,再集成波导型探测器的方案,避免采用光谱仪;(4)解决硅基光子传感单元与分束耦合、滤波单元、微流通道等各功能单元器件集成问题以及芯片上不同功能器件的性能干扰与退化问题。最终制作并测试了集成光波导生物传感芯片,为实现高灵敏度集成光波导生物传感器的微型化、集成化、多功能化、便携化打下良好的理论和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于平面光波导器件的可见光波段集成传感芯片研究
可见光波段金属二维光子晶体的飞秒激光快速成型研究
基于悬挂芯光纤微单元的矢量加速度传感器研究
基于新型硅基波导结构的中红外波段频谱变换研究