Recently, with the ever-increasing demand for mass transport by road, rail, air and sea, so is the potential for accidents and equipment failures. The resultant human injuries and damage to property present a massive burden on society. Scientists and engineers including bio-engineers, designers and researchers in the field of structural crashworthiness and impact biomechanics, face an increasing challenge of finding solutions that greatly improve transport safety. As an energy absorption member, fiber-reinforced plastic composites (FRPs) are more favorable because they are light in weight and possess better energy absorption capabilities as compared to their metal counterparts. However, the adoption of FRPs as structural elements is limited at present owing to the high cost, complicated energy absorbing mechanisms and a lack of database on structural properties. Therefore, in propose, the design of FRP tubes were carried out with considerations directed at material, structural and processing designs in order to transcend the experimental stage and cross over to true application studies. Studies will be carried on FRP tubes with square or rectangular transverse cross sections. Such tubes were found to have a low energy absorption capacilty as compared with circular ones but convenient to assembling. Therefore, the tube geometry (in particular corner geometry of the tube) will be redesigned to improve their energy absorption capabilities. Various simple configurations of reinforcing fibers such as winding, 2D woven and 2D braided textile structures will be focused, in particularly, with the hybid of glass fiber, carbon fiber and aramid fiber. The micro multi-fracture mechanisms relative to the energy absorption will be discussed in details based on the quasi-static and dynamic impact tests in a range from room temperature to 350 degree. The main target of this propose is to achieve Specific Energy Absorption value at 110kJ/kg and build up an analysis and predict method in order to realize its practical application in transport facility.
轻质高强的纤维增强高分子型复合材料由于吸能机制过于复杂,限制了其在交通工具领域中的应用。本项目拟通过研究其在损毁过程中的微观吸能机制,了解多种纤维混合方式、纺织结构以及薄壁管件的几何形状之间内在关联,明确材料技术及其结构设计、制造技术在吸能特性方面的优势。申请者前期研究了碳素纤维两维、三维编织物纺织结构的复合材料管件物(圆管)的吸能特征,给出圆管吸能部件在实用中的设计经验。然而产业界仍然希望采用相对简单工艺和价格可控材料的能量吸收部件新型设计方法。基于前期研究,本项目中申请者将独辟蹊径地采用具有互补性的多种增强纤维,计划在应用工艺简单的缠绕/机织/编织等两维织物结构和常见纤维增强热固性树脂条件下实现比能量吸收性能达到110kJ/kg的目标,建立混合型纤维增强热固性树脂复合材料在准静态压缩和动态冲击下的破坏吸能机制分析和预测方法,以提高复合材料吸能部件在交通工具中的效用。
轻质高强的纤维增强高分子型复合材料由于吸能机制过于复杂,限制了其在交通工具领域中的应用。本项目拟通过研究其在损毁过程中的微观吸能机制,了解多种纤维混合方式、纺织结构以及薄壁管件的几何形状之间内在关联,明确材料技术及其结构设计、制造技术在吸能特性方面的优势。申请者前期研究了碳素纤维两维、三维编织物纺织结构的复合材料管件物(圆管)的吸能特征,给出圆管吸能部件在实用中的设计经验。基于前期研究,本项目中申请者采用具有互补性的多种增强纤维,应用工艺简单的缠绕/机织/编织等两维织物结构和常见纤维增强热固性树脂条件下实现比能量吸收性能达到100-110kJ/kg的目标,建立混合型纤维增强热固性树脂复合材料在准静态压缩和动态冲击下的破坏吸能机制分析和预测方法,以提高复合材料吸能部件在交通工具中的效用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
动物响应亚磁场的生化和分子机制
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
编织复合材料薄壁管吸能特性的数值研究
拼焊形式车身薄壁管件变形吸能机制及碰撞安全性高效设计方法研究
面向新能源汽车吸能件的碳纤维复合材料冲击损伤机理与多尺度优化设计研究
车身薄壁梁碰撞吸能高效模拟方法研究