Zinc-air battery has emerged as a promising candidate for next-generation energy storage owing to its outstanding merits, e.g., high theoretical energy density, low cost, high safety and environmental friendliness. However, the practical application of rechargeable zinc-air battery is faced with the sluggish kinetics of oxygen reduction/evolution reactions, high price and scarcity of noble metal based electrocatalyst, as well as low efficiency of the full cell system. In this project, we focus on the rational design and controllalbe construction of self-supported noble metal-free system with Co (Ni)-based carbon hybrids as bifunctional oxygen electrodes. We also dedicate efforts to reveal the intrinsic electrocatalytic activity and explore the strategy for synergistic enhancement of electrochemical performance, in order to achieve the fabrication and optimization of rechargeable zinc-air battery devices. Generally, this project includes three phases as follows: 1) A novel stragety will be proposed to achive the precise synthesis of transition metal based carbon hybrids combined with rational nanostructuring and defects engineering via topochemical evolution and heterostructure construction. 2) Integrative protocols will be developed to controllably construct self-supported Co (Ni)-based carbon hybrids electrodes. Meanwhile, study on the electrocatalytic performance of self-supported oxygen electrodes and structure-property relationship will be performed. 3) Based on the electrochemcial measurements coupled with multiple characterization techniques, catalytic and energy storage mechainsm of self-supported carbon hybrids will be uncovered for their application as bifunctional oxygen electrodes in rechargeable zinc-air battery devices.
锌空气电池,具有比能量高、安全性好、价格低廉、环境友好等优点,被认为是一种理想的下一代新能源器件。针对目前可充锌空电池所面临的氧气反应动力学缓慢、贵金属催化剂成本高、全电池充放电效率低等关键问题,本项目选取非贵金属钴(镍)基/碳杂化物为研究对象,设计构筑高效稳定的双功能自支撑氧电极,探索钴(镍)基/碳杂化物本征催化活性与协同增效策略,实现可充锌空全电池的器件组装与性能提升。主要研究内容包括:1)探索过渡金属基/碳杂化物的拓扑构建与杂化改性的新策略,实现功能单元的精准合成、微纳设计与缺陷调控;2)优化活性组分-高导电基底的一体化制备工艺,研究钴(镍)基/碳杂化物自支撑电极的可控构筑、电催化性能及构效关系;3)借助电化学-多手段联用,揭示电极材料的催化机理与储能机制,实现双功能碳杂化物自支撑电极的全电池器件的全优构建。
针对水系金属空气电池目前面临的氧气反应动力学缓慢、贵金属催化剂成本高、充放电效率低等关键问题,本项目提出一体化构建碳基杂化物氧电极,探索过渡金属基/碳杂化物本征催化活性与协同增效策略,实现锌空气全电池的器件组装与性能提升。本项目立足开发低成本、宏量化、可控制备碳基杂化物材料的新方法,揭示催化活性、储能性能与反应机理的内在关联,助力水系锌空气电池的性能提升。主要成果包括:(1)通过有效调控前驱体、自模板、湿度、温度等体系环境因素,实现具有分级多孔、自组装、多尺度构筑单元等特点的碳基功能负载基底的可控制备;(2)利用双基质限域、相变调控、缺陷诱导等协同手段,实现过渡金属单原子、过渡金属化合物异质结构与功能碳基底的均匀锚定与有效杂化;(3)通过微纳结构构筑、配位环境优化与电子结构调控,实现中间态吸附能优化及活性位点催化性能提升,研究氧电极组分结构、电催化性能及其构效关系,结合理论计算揭示电极材料的催化机理与储能机制,实现锌空气全电池器件的全优构建。本项目开展了系列碳基功能杂化材料的催化本征机理研究,并拓展了空气电池、全水解制氢、离子储能、柔性传感等应用,为高能量密度、长使用寿命和超快充放电能源器件的开发,以及其他功能纳米材料的设计提供了理论依据与材料基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
复杂系统科学研究进展
氧化应激与自噬
石墨烯基TiO2 复合材料的表征及其可见光催化活性研究
沥青炭填充提高SnO_2/还原氧化石墨烯负极材料Coulomb效率及储钠性能
多级结构氮掺杂碳基一体化空气电极的可控制备及其可充锌-空气电池性能研究
自支撑碳基柔性电极的构筑、调控及其在储能器件中的应用基础
过渡金属氧化物-多孔氮杂碳阵列电极的可控制备及其在锂-氧电池中的应用
燃料电池双功能氧电极的构筑及其催化机理研究