基于概率最小二乘支持向量机的智能医疗决策系统研究

基本信息
批准号:71701136
项目类别:青年科学基金项目
资助金额:19.00
负责人:范璧
学科分类:
依托单位:深圳大学
批准年份:2017
结题年份:2020
起止时间:2018-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:李鑫,杨雯,张雨龙,翁丽丽,李翠,王康
关键词:
临床决策支持体感诱发电位多模型概率最小二乘支持向量机置信区间
结项摘要

Somatosensory evoked potential (SEP) is a very effective noninvasive monitoring technique, which is widely used in spinal surgery. By comparing the changes of the SEP signal with the SEP baseline, the spinal cord function is monitored in the operation. It is found that SEP baseline was not constant during surgery, and was affected by non operative factors (such as blood pressure, anesthesia, etc.). Therefore, the traditional static SEP baseline monitoring method is prone to false alarm. In clinical practice, the observer dynamically adjusts the SEP baseline to prevent false positives based on personal knowledge and experience. However, the clinical practice of SEP monitoring is limited by the those factors, such as the high cost of training,fatigue and mood of the observer. An effective and reliable decision system is needed for SEP monitoring. In this project, a Probabilistic Least Squares Support Vector Machine based Intelligent Clinical Decision Making System is proposed, including the work of online probabilistic least squares support vector machine model, multimodal based hybrid decision model, the confidence intervals and prediction interval estimation of probabilistic least squares support vector machine. An accurate, fast, reliable and intelligent SEP monitoring system is offered by this project.

体感诱发电位(SEP)是一种非常有效的无创伤性的监护技术,广泛用于脊柱外科手术中。对比手术中SEP信号与基准SEP的幅值变化来监控脊髓功能状况。研究发现SEP基线在手术期间并非恒定,受非手术因素(如血压,麻醉等)影响发生变化。因此,传统静态SEP基线监护方法容易产生误报警现象。在临床实践中,监护人员依据丰富的知识和经验动态调整SEP基线来防止误报。而专业人员的高昂培养费用、疲劳和情绪等各种原因引起的主观性偏差,阻碍了术中SEP脊髓监护方法在临床中的有效普及。急需一种有效可靠的决策系统来对SEP异常进行监控。本项目提出的基于概率最小二乘支持向量机的智能医疗决策系统,包括基于在线概率最小二乘支持向量机的动态时空模型、基于多模型的混合决策模型、概率最小二乘支持向量机的置信区间和预测区间估计三方面的来实现精确、快速、可靠和智能的SEP监护系统。

项目摘要

临床医疗决策问题中,常常需要考虑影响因素的多样性及各因素之间的错综复杂的联系。特别是在患者,手术人员,环境等不确定的因素影响下,建立一个通用的医疗辅助决策模型,是理论者和实践者面临的一个迫切需要解决的问题。本项目采用数据驱动建模方法对临床手术信号监控展开研究。主要研究成果如下:(1)将手术数据的不确定性融入模型当中,考虑到手术监控中的随机特性,构建了一种在线概率最小二乘支持向量机的时空模型用于SEP监控;(2)研究了单台手术数据和整体手术数据之间的关系,通过多模型架构,给出了一种概率权重最小二乘支持向量机预测模型;(3)针对模型预测值的概率特性,通过对期望和方差的合理估计,给出了概率最小二乘支持向量机预测值的置信区间估计。最后,通过实证研究,验证了本项目所提出模型的有效性。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于一维TiO2纳米管阵列薄膜的β伏特效应研究

基于一维TiO2纳米管阵列薄膜的β伏特效应研究

DOI:10.7498/aps.67.20171903
发表时间:2018
2

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

DOI:10.16606/j.cnki.issn0253-4320.2022.10.026
发表时间:2022
3

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
4

基于LASSO-SVMR模型城市生活需水量的预测

基于LASSO-SVMR模型城市生活需水量的预测

DOI:10.19679/j.cnki.cjjsjj.2019.0538
发表时间:2019
5

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016

范璧的其他基金

相似国自然基金

1

基于支持向量机的智能诊断技术及应用研究

批准号:50175087
批准年份:2001
负责人:张周锁
学科分类:E0503
资助金额:18.00
项目类别:面上项目
2

基于多代理技术的医疗知识网与智能决策支持研究

批准号:61151001
批准年份:2011
负责人:肖亮
学科分类:F0214
资助金额:15.00
项目类别:专项基金项目
3

基于支持向量机的岩质边坡滑移变形智能预测模型研究

批准号:41561091
批准年份:2015
负责人:刘小生
学科分类:D0115
资助金额:43.00
项目类别:地区科学基金项目
4

非线性系统基于支持向量机的智能建模与控制方法研究

批准号:60574019
批准年份:2005
负责人:皮道映
学科分类:F0301
资助金额:22.00
项目类别:面上项目