Hydrothermal liquefaction is favorable for bio-oil production from algae, since drying is not needed and all constituents of algae can be effectively utilized. But the high N-containing heterocyclic compounds in product oil is difficult to catalytic degraded and tends to poison the catalyst. A two-stage hydrothermal liquefaction method, including low-temperature hydrolysis combining with moderated-temperature liquefaction, is proposed for utilization of protein-rich algae which is the most common kind of algae. Briefly, part of nitrogen in algae is enriched into aqueous liquid via low-temperature hydrolysis, which can prevent hydrolysis products of protein from reacting with reducing sugar (hydrolyzed from saccharide ) and fatty acid (hydrolyzed from lipids), thus decreases the production of N-containing compounds (i.e. heterocyclic compounds and amides) and the nitrogen content of algae bio-oil at source. This project mainly focuses on: (1) mechanism on hydrothermal liquefaction of protein; (2) decomposition pathway and denitrification mechanism of protein-rich algae during low-temperature hydrolysis; (3) liquefaction mechanism of hydrolyzed residue at moderated-temperature liquefaction; (4) Coupling relationship and regulation mechanism between low temperature hydrolysis and moderated-temperature liquefaction. In light of theory and experiments, special attention is paid for the transferring pathway of the nutrient N and integrated optimization of the whole process. The results serve as fundamental basis for production of bio-oil with a low-nitrogen content from protein-rich algae and other nitrogen-rich materials. It is of great significance in academy and practice.
海藻水热液化制备生物油具有无须干燥、充分利用原料组分等优势,但产物中N杂环化合物含量高,在后续提质中极难催化降解且极易造成催化剂中毒。本研究针对普遍存在的一类海藻资源−高蛋白藻,提出“低温水解-中温液化”分段式水热液化的工艺路线,通过低温水解将一部分N富集在水相,控制蛋白质水解产物与还原糖(糖类水解产物)或长链脂肪酸(油脂水解产物)发生反应,从源头减少生物油中的N杂环化合物和脂肪胺类。研究内容包括:①蛋白质水热降解机理;②高蛋白藻低温水解路径及脱N机理;③固体藻渣中温液化特性及成油机制;④低温水解-中温液化之间的耦合关系及调控机制。通过理论和实验的有机结合,重点解析反应过程中营养元素N的迁移转化路径及“高蛋白藻-低温水解-中温液化-低N生物油”之间的耦合调控机制。预期成果可为高蛋白藻水热液化制备低N生物油提供基础依据,也可为其他高含氮原料的水热液化提供参考,具有重要的学术价值和实际意义。
本研究针对高蛋白藻类生物质,基于“低温水解-中温液化”分段式水热液化的工艺,开展了高蛋白藻分段式水热液化制备低N生物油的基础研究。选取典型氨基酸和葡萄糖分别为蛋白质和糖类的模型化合物,利用石英毛细管反应器,考察了其在反应温度150-300°C和时间15-120min下的转化规律和产物分布特性,提出了苯丙氨酸与葡萄糖反应路径,解析了蛋白质的水热液化机理。选取不同种类的高蛋白藻(硅藻、小球藻和螺旋藻)为原料,利用间歇式水热反应釜进行了水热低温预处理研究,考察了反应温度120-250°C和时间5-60min下的各相产物产率,重点研究了C、N元素产物的分布特性和赋存形态,解析了高蛋白藻低温水解路径及脱N机理。针对低温水热预处理固体产物-固相藻渣,在深入考察其热降解特性的基础上,研究了在反应温度250-380°C和时间30-60min下的产物分布,重点分析了目标产物生物油的产率及组分特性,阐述了固体藻渣的中温液化特性及成油机制;基于以上研究,解析了高蛋白藻低温水解-中温液化之间的耦合关系及调控机制。结果证明,高蛋白藻经低温水解预处理通过脱氨反应能有效将一部分营养元素N富集在水相,抑制了蛋白质水解产物与糖类水解产物或油脂水解产物发生反应,进而从源头减少生物油中的N杂环化合物和脂肪胺类。本研究成果可为高蛋白藻水热液化制备低N生物油提供基础依据,也可为其他高含氮原料的水热液化提供参考,具有重要的学术价值和实际意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
低轨卫星通信信道分配策略
低脂高蛋白藻水热液化过程关键元素迁移与成油机制
海藻水热法液化制生物油的解聚途径和调控机制
热解木醋液促进秸秆水热液化成油及水相产物循环利用的机制
水热溶剂热技术低压转化植物性生物质废弃物为低氧生物油的基础研究