There are quite some advantages of electro-hydraulic brake on present-day construction vehicles for the purposes of energy conservation, environment friendliness and safe and efficient operation. The power adjusting system of regenerative energy from hydraulic hybrid power can offer an effective solution, which is essential in the development of this technology, to the power supply problems of restricting power brake and other active control technology. This is due to the fact that this system has increased the complexity of the energy transmission among the sub-systems within the vehicle. This new dynamic designing theory and method for electro-hydraulic brake system based on regenerative energy has been put forward for the design and adjustable control of electro-hydraulic power brake system in the condition of multi-system coupling or difficult vehicle operation. With theoretical analysis and experiment verification, the power adjustment and control mechanism between the active systems of vehicle and storage system of regenerative energy has been made a detailed study of, and as a result, the related design rules have been worked out. The multi-system power adjustment and control principle and law are analyzed and grasped for the stability of whole vehicle braking efficiency, effective recollection and allocation of energy. The integrated design and collaborative optimization of active systems are studied. Energy-saving methods and strategies are proposed between regenerative brake, power adjustment and active systems to achieve the result of highly efficient coupling between all the systems. This project is very significant in both theory and practice for the study of multi-system application and control of regenerated energy, and for the research and manufacture of energy-saving electro-hydraulic power brake system.
电液动力制动在保证现代工程车辆节能、环保、高效安全行驶方面更具优势。基于液压混合动力再生能量的动力调节系统可有效解决制约动力制动等有源控制先进技术发展所急需的动力问题,但由此加剧了车辆各子系统间能量传递的复杂程度。为实现在多系统耦合与复杂行驶作业条件下电液动力制动系统的设计与协调控制,提出基于再生能量的电液动力制动系统动态设计新理论与新方法。结合理论分析与实验验证,重点研究车辆有源系统与再生能量存储系统间的动力调节控制机理,并导出相关设计准则;分析掌握实现整车制动效能稳定、能量高效回收与分配的多系统动力协调控制原理与规律,探讨有源系统的集成设计与协同优化方法;提出再生制动、动力调节和有源系统间的节能控制方法与策略,实现各系统间的高效耦合。项目研究成果对再生能量的多系统应用控制研究、节能型电液动力制动系统研制具有重要的理论与实际意义。
基于液压混合动力再生能量的动力调节系统可有效解决制约动力制动等有源控制先进技术发展所急需的动力问题。因该系统加剧了车辆各子系统间能量传递的复杂程度,为实现在多系统耦合与复杂行驶作业条件下电液动力制动系统的设计与协调控制,本项目通过理论分析、数值仿真和实验验证等手段,系统研究了有源系统与能量存储系统间的动力调节控制机理,提出了动力调节系统基本设计准则;建立工程车辆多系统研究与控制分析柔性仿真平台,系统分析了实现制动效能稳定、能量高效回收与分配的多系统动态协调控制原理与规律,形成了有源系统的集成设计与协同优化方法;系统研究了再生制动、动力调节和有源系统间的节能控制方法与策略,搭建了能量回收模拟试验台及硬件在环仿真实验系统,形成了基于再生能量的工程车辆电液动力制动系统动态设计理论与方法并将其应用于新型复合储能式混合动力系统设计和电动车辆关键系统设计。项目研究成果对再生能量的多系统应用控制研究、节能型混合动力车辆研制、工程车辆高新技术领域创新具有重要的理论与实际意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
敏感性水利工程社会稳定风险演化SD模型
再生制动系统能量回收方法与制动力调节机理的研究
基于能量高效回收的复合制动能量回收系统制动力调节机理研究
车辆摩擦制动系统非线性动力学研究
大型混合动力汽车制动实时机理与机-电-磁集成制动控制方法