As a new type of multifunctional materials, Terfenol-D-based multiferroic magnetoelectric composites have stimulated a sharply increasing number of academic and engineering research activities in recent decades, due to their giant magnetoelectric effects, which have been widely used in the modern new high-tech fields, such as sensing technology, information technology, microelectromechanical system, and so on. Based on the existing research results of the proposer, the nonlinear magnetic-elastic-electric coupling behavior and hysteresis behavior inherent to multiferroic magnetoelectric composites are investigated in this project. A nonlinear hysteresis model with magnetic-elastic-electric coupling effects, which can predict the magnetoelectric effects of the composites in quantity, is established for Terfenol-D-based multiferroic magnetoelectric composites, in which theoretical derivation and numerical simulation as well as experimental verification are all used. Accordingly, the numerical simulation program is proposed for solving the multivalued strongly nonlinear multi-fields coupling problem. In this project, the influences of the magnetic, electric and mechanical losses as well as interface slipping loss on the hysteresis behavior of the multiferroic magnetoelectric composites are mainly investigated by using the nonlinear hysteresis model, and the reasonable explaination about notable discrepancies between the experimental data and theoretical prediction of the linear models is given. The research work of this project can be used in the property characterization and optimization design of Terfenol-D-based multiferroic magnetoelectric composites, and eventually provide theoretical basis for the design and research of the novel magnetoelectric multifunctional devices, which exhibit high precision and high performance characteristics.
基于Terfenol-D的多铁性磁电复合材料因其超高的磁电转换性能在传感技术、信息技术、微机电系统等现代高新技术领域存在广泛的应用,作为一类新型多功能材料于近十年成为学术界和工程界的研究热点。本项目在项目申请人已有研究成果的基础上,针对多铁性磁电复合材料自身固有的非线性的磁-弹-电耦合行为与迟滞行为开展研究,拟采用理论建模、数值仿真和实验验证相结合的方法建立定量预测复合材料磁电转换性能的精确理论模型- - 磁-弹-电耦合的非线性迟滞模型,开发求解多值强非线性多场耦合问题的数值仿真程序,重点研究磁滞损耗、电滞损耗、机械损耗和界面滑移损耗对多铁性磁电复合材料迟滞行为的影响,给出已有模型的理论预测值明显高于实验测量值的合理解释,从而为基于Terfenol-D的多铁性磁电复合材料的性能表征和优化设计提供理论指导,最终为高精度、高性能的新型磁电多功能器件的研发奠定理论基础。
本项目以获得广泛应用的基于Terfenol-D的多铁性磁电复合材料为基本研究对象,紧紧围绕复合材料中复杂的强非线性多场耦合问题与迟滞问题进行了系统深入的实验、理论与数值仿真研究。首先,以构成多铁性磁电复合材料的单相Terfenol-D合金和PZT-5X为具体研究对象,基于热力学理论和能量守恒原理,建立了以上两类功能材料的系列本构模型。其次,将Terfenol-D合金磁-弹耦合的静、动态磁滞非线性本构模型分别用于有偏和无偏加载情形下以Terfenol-D棒为核心元件的磁致伸缩智能器件的性能优化与高频动态性能表征中,获得与已有实验测量结果定量吻合良好的理论预测结果,间接证明了相关本构模型的准确性和有效性。最后,主要以L-T模式下运行的层状磁电复合材料为具体研究对象,实验测量了Terfenol-D/PZT-5X/Terfenol-D以及PZT-5X/Terfenol-D/PZT-5X两类夹层结构的磁电电压系数随直流偏磁场变化的滞回特性,并将Terfenol-D合金磁-弹耦合的单值非线性本构模型和动态磁滞非线性本构模型引入多铁性磁电复合材料正磁电效应的研究之中,建立了定量预测复合材料磁电转换性能的理论模型——磁-弹-电耦合的非线性迟滞模型,开发了与之相对应的求解多值强非线性多场耦合问题的数值仿真程序,通过与实验测量结果和线性理论框架的定量、定性比较,充分证明了新建的非线性迟滞模型在多铁性磁电复合材料的性能表征、优化设计方面的准确性和便利性,指出了理论研究中同时考虑复合材料非线性的磁-弹-电耦合特性与迟滞特性的重要性和必要性。以上研究成果可为基于Terfenol-D多铁性磁电复合材料的性能表征和优化设计提供基本的理论指导,同时也为高精度、高性能的新型磁电多功能器件的研发奠定了理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
多铁性复合材料在接触摩擦作用下的磁-电-弹多场耦合效应研究
铁磁/铁电多铁异质结微畴介观磁电耦合研究
界面对复合多铁性材料磁、电及磁电耦合性质影响的研究
复合磁电多铁性材料本构关系与非线性磁-电-力耦合机理研究