Dielectric capacitors based on ferroelectric ceramics have broad applications in electric systems and microelectronics due to the high dielectric constant, high power density and good temperature stability of these ferroelectric materials. Compared with other devices for electrical energy storage, low energy density (0.1 to 1 J/cm3 level) and charge-discharge efficiency (up to 60-80%) are the main disadvantages of ferroelectric ceramic capacitors, which originate from their low dielectric strengths and polarization-electric field (P-E) hystereses. In this project, by combining the design methods of strain engineering and interface engineering with the sputtering deposition technique, we will prepare multiple ferroelectric thin film capacitor prototypes with slim P-E hystereses and delayed saturations of the electric polarization. These thin film dielectric devices will display high dielectric strengths (MV/cm level) and excellent energy storage capabilities (energy density at the level of 100J/cm3 and energy loss <10%),which can be attributed to a nano-crystalline microstructure with ultra-fine domains in the ferroelectric layer. They will be grown on the commonly used semiconductor substrates, with thicknesses ranging between 100 nm and a few micrometers, covering the range of an applicable voltage between several volts and several hundred volts. Microstructures and electrical properties of the ferroelectric dielectric layers will be systematically analyzed via multiple characterization methods. The capacitive charging-discharging behavior, which directly correlates with the energy storage performance, will be studied and optimized for these thin film dielectric devices. The ultimate goal of this project is to obtain a systematic approach for the preparation of high energy density thin film ceramic capacitors.
因具有高介电常数、高功率密度和良好的温度稳定性,铁电陶瓷电容器在电路和微电子系统中有着广泛的应用。与其他电能存储器件相比,较低的储能极限(0.1~1 J/cm3 数量级)和充放电效率(最高~60%-80%)是其主要技术劣势。这是由于铁电陶瓷不仅击穿场强较低,而且具有显著的电滞回线特征。在这一项目中,我们拟采用磁控溅射技术,结合应变工程和界面工程方法,在半导体基片上制备具有细长铁电回线和极化饱和滞后特征的多种铁电薄膜电容器原型。这些薄膜介电器件具有高击穿场强(~MV/cm 数量级)、高储能密度(~100 J/cm3 数量级)和低充放电损耗(<10%),其介电层为具有精细畴结构的纳米多晶体,厚度从100纳米到几个微米,覆盖的使用电压从几伏到数百伏。我们将利用多种测试手段分析表征铁电介电层的微观结构和电学性能,研究并优化其电容充放电特性,最终形成高储能密度陶瓷薄膜电容器的制备方法体系。
本项目针对铁电陶瓷储能密度低、集成困难 、效率欠佳等目前研究中存在的不足,通过畴工程、晶粒工程、界面工程等方法,以磁控溅射作为主要实验手段,结合缓冲层、快速退火等技术,在硅和钛酸锶等常用半导体基底上设计制备了BaTiO3、Ba(Zr,Ti)O3、(Ba,Sr)(Zr,Ti)O3、CaBi2Nb2O9、(K,Na)NbO3等多种无铅高储能铁电陶瓷薄膜。利用多种测试方法表征了储能的结构单元,如纳米晶粒/晶界,纳米畴,纳米层间界面等。这些方法包括XRD、扫描电镜、透射电镜、扫描探针显微镜、拉曼光谱、二次谐波等结构表征手段,和利用铁电综合测试仪、LCR表、阻抗分析仪等仪器进行的电学性能测试。在储能薄膜的理论设计方面,我们提出了组建降低剩余极化、迟滞极化饱和的异相多畴结构(Nat. Commun., 2017.12),以及在实现这两个设计目标基础上进一步提升薄膜击穿场强的超精细柱状纳米晶结构(Energy Storage Mater. 2021; ACS Appl. Mater. Inter. 2021)。我们还提出了具有高击穿场强和近线性强极化响应的超顺电纳米晶粒模型(Adv. Energy Mater. 2020),并在相应的(Ba,Sr)(Zr,Ti)O3薄膜中同时实现了高储能密度(~100J/cc)和高储能效率 (~90%) 。在储能薄膜的实验制备方面,我们采用缓冲层和RTA技术,在硅基底上室温到500oC的温度范围内,成功制备了高储能密度的CaBi2Nb2O9、BaTiO3和(Ba,Sr)(Zr,Ti)O3薄膜,其制备温度与半导体和集成电路工艺兼容。在储能薄膜的测试表征方面,我们针对储能稳定性(储能密度和效率的温度、循环、频率稳定性)这一类关键特性,提出了获得高稳定性的实现途径(通过中低温沉积形成高密度晶界阵列),并建立了基于介电调谐率的定量评估标准。相关工作发表在了Appl. Surf. Sci. (2022), npj Compu. Mater.(2021)和无机材料学报(2021)等知名SCI期刊上。我们亦创造性地提出了用室温极化特性(电滞回线,翻转电流,二次谐波谱,宽频介电谱)和变温相变特性(介电温谱、变温拉曼)相结合的方法,来判定极小晶粒尺寸的铁电材料是否已进入其超顺电状态。这些结果对于储能铁电薄膜的研究和开发应用具有重要的指导意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
卫生系统韧性研究概况及其展望
无铅反铁电储能电介质陶瓷的设计与制备、介电铁电响应行为及放电特性研究
高储能密度钛酸锶高频陶瓷介质的研究
Na0.5Bi0.5TiO3高储能铁电陶瓷高压相变及冲击放电性能研究
高场强下高储能密度全有机复合电介质薄膜研究