It is found and analyzed that the key problem to hinder the maximum grinding performance of monolayer brazed superabrasive tools might be due to a false assumption. In this assumption, it was always thought that the optimum undeformed chip thickness was identical for each grain on the abrasive tools. In this project, it is proposed to identify and characterize the real condition of the working surface of the monolayer abrasive tools. Through researching the coupling laws between the real tool condition and the grinding parameters, acquiring the distribution characteristics of the real undeformed chip thickness of each grain, the interacting rule will be obtained among the distribution characteristics, tool condition and grinding parameters. Subsequently, the evolution law of the interfacial actions between tool and workpiece in grinding will be investigated. The relational model is accordingly mapped between the distribution characteristics of undeformed chip thickness and the machining results. Finally, according to the characteristics and demands of the parts to be machined, the invertion model will be established among the distribution characteristics of the real undeformed chip thickness, the real tool condition and the grinding parameters. In addition, it is proposed to research the key technology and fundamental problem concerning the in-processing producing of grain micro-edge for the monolayer brazed superabrasive tools. At the same time, the verification experiments with the optimum grinding parameters will be carried out based on the particular abrasive tools, which is confined with the distribution characteristics of the undeformed chip thickness of the grains. All the work of this research project could provide reliable scientific basis for high-efficiency and precision grinding high-quality part in the fields of some high-end equipment manufacturing industry such as aerospace machine tools.
发现并阐述了造成单层钎焊超硬磨料工具高效磨削无法突破现有瓶颈的根本原因是采用了磨削中所有磨料处于相同的单颗磨粒最佳切削厚度的错误假设。提出从单层超硬磨料工具表面实际状态的识别与表征入手,通过研究工具表面状态与磨削参数的耦合规律,提取工具表面不同磨粒切削厚度的分布特征,揭示该分布特征与工具状态、磨削参数的交互影响规律;通过磨削界面行为演变规律的研究建立磨粒切削厚度分布特征与最终加工结果之间的映射模型;基于上述研究,实现针对不同加工对象和目标要求的磨粒切削厚度分布特征、工具工作状态以及加工参数的反演;提出并解决单层钎焊超硬磨料磨削过程中微刃的在线生成关键技术及其关键科学问题;实现以磨粒切厚分布特征为约束的单层超硬磨料工具制备及磨削参数优化并进行综合实验验证。项目的完成可为航空、机床等高端装备制造领域强韧和硬脆难加工材料高品质零件高效精密磨削提供可靠的基础依据和技术,具有明确的理论与实际意义。
单层超硬磨料工具高效磨削是先进制造领域的前沿技术,在加工效率、工具寿命、加工质量等方面具有独特优势,在航空航天、武器装备、以及民用装备制造领域具有广阔应用前景。项目组以突破制约基础理论、工具制备与磨削工艺发展的瓶颈问题为目标开展研究。主要取得了如下成果:.提出了“宏观全场与微观局部”协同实现砂轮表面磨粒状态检测策略,研发了专用测试系统,实现了砂轮三维表面状态的快速精准识别。通过建立系列磨粒(群)分布、状态受控砂轮的制备平台,揭示了砂轮钎焊界面微结构形成机制与单层超硬砂轮磨粒微刃的形成机理。建立了磨粒/工件三维干涉下的磨粒切厚分布模型,形成了磨粒切厚分布求解流程与算法,突破了多磨粒干涉下的切厚通用模型求解的难题。提出磨粒切厚分布特征量化表达指标,并揭示了砂轮地貌和磨削参数对磨粒切厚分布特征的影响规律。阐明了磨粒切厚对磨削力、磨痕(成屑)的影响规律与作用机理,建立了磨粒切厚分布特征参数与磨削过程量及加工结果之间的映射关系。提出了包含磨粒排布参数和砂轮修整参数的砂轮反演设计方法,形成了磨粒切厚分布特征约束的磨削过程正反向设计准则。完成了单层超硬磨料砂轮高效低载荷磨削镍基合金叶片榫齿与石材结构件的实验研究,为航空航天、机床等高端装备制造领域强韧和硬脆难加工材料高品质零件磨削制造提供了基础理论和技术支持。.项目研究成果获福建省技术发明一等奖与国防技术发明二等奖各1项。研究团队入选科技部重点领域创新团队,获教育部创新团队发展计划滚动资助;培养国家级人才计划2人次,入选省级人才计划7人次,硕/博士研究生38人。获省部级协同创新中心2个,省级工程研究中心1个。在机械制造领域重要主流期刊发表学术论文77篇(其中SCI收录60篇、EI收录11篇),出版中文专著1部。申请发明专利27件(其中授权16件);软件著作权2件。主办学术会议5次,邀请境外专家讲学11场,项目成员出国进修8次。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
钢筋混凝土带翼缘剪力墙破坏机理研究
气载放射性碘采样测量方法研究进展
货币政策与汇率制度对国际收支的影响研究
燃烧合成法制造单层超硬磨料磨削工具理论及工艺研究
基于磨削温度和动态有效磨粒比的多层超硬磨料砂轮磨削性能研究
高温钎焊单层超硬磨粒砂轮的研制与磨粒有序排布技术
固结磨粒面接触磨削超精密加工机理