With the miniaturization and integration of electronic devices, environmentally friendly lead-free dielectric thin films have potential applications in the field of pulse power devices for their high powder density, ultrafast charge-discharge speed, good thermal stability, et al. Aiming at the key problems of low energy storage density of dielectric thin films, this project will explore feasible solutions. First, SrTiO3 (STO) thin films will be prepared on different substrates and the microstructure, stress and diffusion effects at the film-electrode interface will be characterized. The band gap, dielectric, ferroelectric properties and energy storage performance will be studied. On this basis, the sandwich-structured STO/BFO/STO multilayer films will be prepared by inserting BiFeO3 (BFO) layer doped with Mn, Cr, et al. The defects and doping elements will be adjusted to improve the STO-BFO interface combination status. The relationship between microscopic mechanism (including thickness of BFO layer, the number of STO-BFO interfaces, stress, film-electrode interface effects) and macroscopic properties (including temperature-depedent dielectric properties, dielectric nonlinearity, ferroelectric properties, breakdown strength and energy storage properties) will be investigated. The electric field distribution of multilayer films will be simulated by finite element analysis, and the breakdown strength and energy storage properties will be calculated. Combined experiment results and theory analysis, we except to obtain stable preparation technology of multilayer films with excellent energy storage performance. The results of the project can enrich and develop the basic theory and technology of lead-free energy storage films, and provide theoretical and experimental basis for practical applications.
随着电子器件的小型化和集成化,环境友好型无铅介质薄膜因功率密度高、充放电速度快、热稳定性好等特点,在脉冲功率器件领域具有广阔的应用前景。针对介质薄膜储能密度不高等关键问题,本项目拟探寻可行的解决途径。首先,在不同衬底上制备SrTiO3(STO)薄膜,表征其微结构、应力和薄膜-电极的界面效应,研究带隙、介电、铁电和储能特性等。在此基础上,引入Mn、Cr等掺杂的BiFeO3(BFO)层,制备三明治结构的STO/BFO/STO叠层膜;调控薄膜中缺陷、掺杂元素以提高膜内STO-BFO界面结合情况;研究BFO层厚度、界面数、应力、薄膜-电极界面效应等因素与介电和储能之间的关系。用有限元模拟叠层膜的电场分布,计算击穿强度和储能密度。实验和理论相结合,以期获得结构可控、性能优异的储能薄膜和稳定的制备工艺。项目研究结果可以丰富和发展无铅储能薄膜的基础理论和技术,为其实用化提供理论和实验基础。
近年来,随着新能源、移动电子设备、电力系统、混合动力汽车等脉冲功率器件的快速发展,对小体积、高功率密度、高能量密度的电介质电容器储能设备的需求愈加迫切。本项目用溶胶-凝胶法,在改性SrTiO3(STO)薄膜和BiFeO3(BFO)薄膜的基础上,研究了STO/BFO复合薄膜的结构和和储能性能。研究的主要内容有:.①STO薄膜的优化改性。当Mn掺量≤1%时,薄膜为钙钛矿结构,介电常数εr和介电损耗tanδ具有良好的频率稳定性;当Mn掺量≥3%时,薄膜的主晶相为钙钛矿结构,并出现少量杂相,介电常数和介电损耗均随频率的增加而减小,出现介电弛豫。1%Mn掺杂薄膜具有最优的储能性能:2286 kV/cm下的放电储能密度Urec=24 J/cm3,储能效率η=70%。.②BFO层位置和厚度对叠层薄膜性能的影响。三明治结构薄膜的储能性能明显优于两层结构薄膜。且随着BFO层厚度增加,薄膜的击穿场强和储能密度降低,其中STO/1BFO薄膜在2059 kV/cm下的Urec=41 J/cm3,η=45%;在10 kHz时的εr=274,tanδ=0.030,在200 kV/cm下的介电可调性τ=4.2%,室温到200 ℃的容温变化率CTV为-5.5%,具有良好的频率稳定性和温度稳定性。.③随界面数的增加,薄膜的放电储能密度先增加后减小,储能效率增大。最优储能性能为:2333 kV/cm下的Urec=48 J/cm3,η=56%。与Pt上的薄膜相比,LNO上的薄膜具有较高的储能密度。.④退火温度和BFO含量对STO薄膜的影响。550 ℃退火薄膜的耐压强度最大,在4541 kV/cm下的Urec=54 J/cm3,η=78%;在10 kHz时的εr=43,tanδ=0.005。在STO-BFO薄膜中,当BFO含量为10%时,薄膜的耐压强度和储能密度最高:在5876 kV/cm下的Urec=101 J/cm3,η=93%;室温到150 ℃之间,储能性能具有优异的温度稳定性。其在10 kHz时的介电性能为:εr=35,tanδ=0.003,室温到200 ℃的CTV=2.4%。并用COMSOL对其电场分布进行了有限元模拟分析。.可见,STO/BFO复合薄膜具有优异的介温稳定性、偏压稳定性和储能特性,在高温储能领域有较好的应用潜力。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
Magnetic Properties and Spontaneous Polarization of La-, Mn- and N-Doped Tetragonal BiFeO3: A First-Principles Study
钢筋混凝土带翼缘剪力墙破坏机理研究
双粗糙表面磨削过程微凸体曲率半径的影响分析
采煤工作面"爆注"一体化防突理论与技术
BiFeO3薄膜及异质结构的电光、磁光效应和应力调控
BiFeO3单层及其异质多层薄膜畴结构调控及电子输运特性
极化调控多铁BiFeO3异质结薄膜的电致阻变与光伏效应及其耦合研究
BiFeO3基薄膜和异质结外电场下磁电响应及耦合研究