While alone bit teeth broke the hard rock within deep hole, it is impacted by particles constantly that cause serious erosion of drilling bit and the failure of drillstring. In order to ensure the safety and efficient excavation, it proposes a study on impacting mechanisms of coupled vibration and migrated regularities of vibration energy for telescopic drillstring into hard rock within deep hole, based on multi-disciplinary modeling, synthesis analysis and imitating tests. Firstly, the bit teeth impacting model was established for rock crushing, and the influence rules of the parameters, including impact load, impact frequency, bit teeth velocity, rock mechanics properties, were analyzed on the performance indicators of rock breaking rang, teeth loading, temperature and microstructure wear. And, the optimal impact method and the parameters are determined. Secondly, based on extended Hamilton’s principle, the model of rock-tooth-drillstring was conducted, in which the effect rules of working parameters, such as drilling speed, drilling torque, drilling pressure and drilling depth, and the medium parameters, including drilling fluid pressure, colliding between the drillstring and borehole, on the forms of the coupled vibration, the loading distribution and the wear of telescopic drillstring were investigated. And, the optimal matching relationship among different parameters is derived. Besides, based on nonlinear targeted energy transfer, evaluation criterion of energy consumption was established. The migrated regularities of vibration energy for telescopic drillstring were expounded and drillstring absorber was developed, which provide technical support for the safe and efficient excavation into hard rock within deep hole.
单靠钻齿切削破碎硬岩,钻具磨损严重且易引发钻杆失效,为保证伸缩钻杆安全高效开挖,基于多学科建模、综合分析及模拟测试,开展深孔冲击破岩钻进下伸缩钻杆耦合振动机理及振动能量转迁规律研究。建立钻齿冲击破碎坚硬岩石的数值模型,获得冲击载荷、冲击频率、钻齿运动速度、岩石力学性质等参数对岩石破碎范围、钻齿载荷、钻齿温度及磨损微观形貌等性能指标的影响规律,确定钻齿破岩冲击方式和参数优选;基于扩展哈密顿原理建立岩石—钻齿—钻杆的动力学模型,揭示冲击激励钻进工况下工作参数(钻进速度、钻进扭矩、钻压力、钻孔深度)和外界介质参数(钻井液压力、钻杆与孔壁的碰撞作用)对钻杆振动耦合特性、钻杆载荷分布及钻杆磨损的影响规律,获得冲击激励破岩下钻杆系统的最佳参数匹配关系;基于非线性能量转迁技术,建立能量消耗评价准则,阐明钻杆振动能量转迁耗散机制,研制钻杆振动能量吸收装置实验样机,为实现深孔硬岩的安全高效开挖提供技术支撑。
为保证旋挖钻机钻杆在不同的工作参数和环境因素下的作业性能,提高其工作可靠性,基于多学科建模、综合分析及模拟测试,开展了深孔硬岩冲击钻进下伸缩钻杆耦合振动的动力学特性及振动能量转迁规律研究。建立了钻齿冲击破碎坚硬岩石的数值模型,研究了不同加载方式和加载参数下钻齿载荷变化及岩石应力损伤范围的影响规律,优选出了硬岩钻进最佳加载方式和加载参数;确定出了钻齿破岩过程预测的最优机器学习算法模型,为旋挖钻机智能化施工提供了相应的预测模型。从工作参数特征出发,分析了钻进工况时三参数(加压力、动力头扭矩、钻孔深度)变化对钻杆振动的动态变化关系,发现钻杆的加压力、动力头扭矩和钻孔深度值越大,钻杆的振动幅值越大。研究了环境特性改变(泥浆粘滞性、钻杆与孔壁的接触碰撞)对钻杆耦合振动的影响规律,发现泥浆的黏滞作用严重影响了钻杆的应变量。基于流固耦合和碰撞耗能理论,构建了非线性能量吸收器模型,通过理论分析和仿真研究揭示了钻杆振动能量的转迁耗散规律,为钻杆减振产品的开发奠定理论基础。利用目标能量转迁技术,设计了旋挖钻机钻杆减振器,通过对减振器性能的试验分析和性能对比,减振器显著降低了钻杆的振动幅值。总体来说,本研究提高了钻机的破岩能力,降低了钻具磨损和钻杆失效,为深层、坚硬岩石的安全高效开挖提供了基础。项目资助共发表SCI论文7篇,中文论文6篇,其中EI论文2篇;申请发明专利5项、实用新型专利5项,其中授权发明专利2项、实用新型专利5项;共培养2名博士生和2名硕士生,其中1名博士和1名硕士取得学位。项目投入经费22万元,共支出19.3739万元,各项支出基本与预算相符。剩余2.6261万元,剩余经费用于本项目研究后续支出。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
深孔高温硬岩中涡轮钻进粘滑振动及其抑制机理研究
声频振动钻进系统共振机理及能量传递规律研究
声频钻进过程液压振动系统-钻具-井筒耦合振动研究
频繁爆破作用下岩体累积损伤演化规律及振动效应研究