The bio-treatment methods of MSW include sanitary landfill and composting, however, the two methods both produce a great deal of greenhouse gas, and methane is the most important one. Once without the proper disposal, the methane emission would be out of order, and polluted environment seriously. This research was based on the two funds, which were < The research of GHG Formation Mechanism and Reduction Based on In-Situ Control of Nitrogen Loss in Composting> and <The Produce Principle and Control Mechanism of Odor Based on In-Situ Control of Nitrogen Loss in Kitchen Waste Composting>, and followed the new concept of in-situ control and reduction, and then processing the research of removing methane from methane oxidation cover material as well what were the effective factors in this process on the basis of methane oxidation bacteria building the structure of cover material, determining the physical characteristics of cover material and the inner connection of methane and oxygen diffusion, analyzing how carbon, nitrogen and other chemical substances and Inoculating Microbes affected the process of methane oxidizing microbes and methane species wiping out critical enzyme, clarifying the relation of methane oxidation bacteria structural characteristics and methane disposal capability in cover material, at last, proposing how to select and Strengthen Functional mechanism of methane oxidation material and optimizing the methane reduction technical in condition of economical and low consumption on in-situ MSW landfill.
生活垃圾生物处理包括卫生填埋和高温堆肥,均产生大量温室气体,其中甲烷是重要组成。如果控制不当,会以无组织排放形式污染环境。本项目以《基于氮素损失原位控制的堆肥中GHG形成机理及减排研究》和《基于 N 素损失原位控制的厨余垃圾堆肥过程中臭气产生规律和控制机理》两个基金为基础,遵循原位控制与减排新理念,进行基于甲烷氧化菌构建的覆盖材料为基础的,填埋场甲烷氧化覆盖材料甲烷去除过程及影响因素研究,明确覆盖材料的物理结构特性与甲烷或氧气等气体扩散的内在联系,分析碳、氮、其他化学物质以及外援性微生物对材料中甲烷氧化类微生物种群结构及甲烷生物去除关键酶的影响,阐明材料中甲烷氧化菌系的结构特性及其甲烷处理能力的关系,在上述基础上,提出堆肥及填埋场甲烷氧化覆盖材料的选择机制及性能强化机制,在低耗、经济的条件下进一步优化生活垃圾生物处理过程甲烷减排技术。
本项目通过对土壤、腐熟堆肥、甲烷营养菌的甲烷氧化特性研究的基础上,构建了复合型甲烷生物滤料,考察了滤料构成、外源物质以及环境因素对滤料甲烷去除性能的影响。并通过Biolog ECO平板以及DGGE指纹图谱等方法研究了滤料的微生物群落变化及甲烷代谢特征,在此基础上,进行了甲烷去除能力最优的滤料与堆肥化过程的耦合试验,探讨了生物滤料对堆肥过程废气排放构成的影响,研究结果如下:.(1)由腐熟堆肥与稻田土壤或腐熟堆肥、稻田土壤及活性炭按比例构建的甲烷生物滤料,原料比例、滤料湿度指标对甲烷去除效果有显著的影响。质量混合比为南宫堆肥:稻田土壤=2:8、自制堆肥:稻田土壤=1:9、稻田土壤:南宫堆肥:活性炭=5:3:2、稻田土壤:自制堆肥:活性炭=7:1:2时,湿度为30%的滤料对甲烷的去除性能最优。Fe、Cu、NH4+-N及NO3--N的适量添加会显著提高滤料的甲烷去除性能,但提高水平受到滤料自身特性的影响。.(2)稻源型滤料中均包含丰富的微生物群落,且种群的丰富度差异并不显著。活性炭的添加及甲烷的预培养均会影响滤料中的微生物群落,改变群落对碳源利用的选择性,但改变程度与滤料本身特性有关。D-木糖、葡萄糖-1-磷酸盐、D-半乳糖酸-γ-内酯以及4-羟基安息香酸可作为判断稻源型甲烷生物滤料微生物群落活性的标志性碳源。.(3)经过筛选获得能够高效代谢甲烷的革兰氏阴性菌M5,初步鉴定属于Ochrobactrum tritici,它可将CH4作为唯一碳源进行代谢,适宜中性偏碱(pH7~9)的环境,最适生长温度为30℃,生长过程耦连甲烷转化过程。培养基优化实验则表明,仅Fe对菌M5的甲烷去除能力及生物量有着极显著的影响。.(4)最优的滤料基质为腐熟堆肥与土壤的混合物。基质材料混合比例、湿度、土壤、接种量、温度、甲烷浓度等因素均会对生物滤料的甲烷去除效率产生一定的影响,本试验获得最优配比为:沙土:腐熟堆肥=8:2(w/w),湿度为38.5%(湿基),接种量为10%(基质干重),工作温度40℃。对该类型滤料的特征分析表明:接种M5会影响基质混合物中微生物群落的多样性,减弱群落的丰富度,改变其对碳源的代谢特征。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
基于LASSO-SVMR模型城市生活需水量的预测
生活垃圾填埋场甲烷厌氧氧化过程发生机制及微生物作用机理研究
焚烧炉渣与生活垃圾混合填埋甲烷产生规律及微生物学机制研究
预处理强化泥炭生物甲烷化的机理研究
填埋场覆盖土层中甲烷氧化微生物的功能表达及其环境响应机理