The project uses the melting and heat treatment methods to prepare a series of rare earth ions (Eu, Dy, Sm, Tb) doped CsPb (BrxI1-X) 3 red quantum dots glass-ceramics (GCs) with high brightness, high quantum yield, high thermal stability, narrow band emission and tunable wavelength, and uses transition elements (Mn, Zn) instead of Pb to reduce environmental pollution. Under the excitation of blue laser, the red GC and the Ce: YAG GC are combined to obtain warm white LED. The photoelectric parameters such as luminous efficiency, color temperature, color rendering index and lifetime of laser LED are studied in detail. Fluorescence spectroscopy, cathode ray fluorescence spectrum, XRD, HRTEM, XPS and other analysis methods are used to explore the influence of doping different kinds, different concentrations of rare earth and transition metal ions and the different Br/I ratio on the luminescence properties of red light QDs-GC CsPb (BrxI1-x)3 , and to research luminescence mechanism and the energy transfer between red QDs and doped ions. The influence of quantum dot GCs composition and preparation process on the luminescence wavelength, luminescence intensity, lifetimes and quantum yield are mainly evaluated. The relationship between microstructure and luminescent properties are established and the compatibility between glass and quantum dots is improved to obtain red fluorescence GCs with good chemical stability, thermal stability and thermal conductivity, making it get more application in the field of laser lighting and display.
本项目采用熔融及热处理方法制备高亮度、高量子产率、高热稳定性、窄带发射、波长可调稀土离子(Eu, Dy, Sm, Tb)掺杂的CsPb(BrxI1-X)3红光量子点微晶玻璃,利用过渡元素(Mn, Zn)替代铅以降低对环境污染,在蓝光激光激发下使红光微晶玻璃与Ce:YAG玻璃复合,制备暖白光LED。详细研究激光LED的发光效率、色温、显色指数、寿命等光电参数;采用荧光光谱、XRD、HRTEM、XPS等分析方法,探讨掺杂不同种类、浓度稀土和过渡金属离子以及不同Br/I比对红光量子点微晶玻璃发光特性的影响,研究红光量子点与掺杂离子之间能量传递和发光机理,重点评价量子点玻璃组分、制备工艺对发光波长、发光强度、寿命、量子产率的影响,建立玻璃微结构与发光性能的关系,改进玻璃与量子点的相容性,获得化学稳定性、热稳定性、导热性良好的红光微晶玻璃,使其在激光照明及显示等领域获得更大的应用。
本项目采用熔融及热处理方法,通过优化基玻璃组分(ZnO、MgO、TiO2、B2O3、SiO2)、调节Br/I比成功制备了系列红光发射CsPb(BrxI1-x)3微晶玻璃,其发光峰位置在620-675 nm可调,荧光量子效率达到14.5-59.2%。采用水淬及多次水洗-热处理方法获得核壳结构玻璃微粉,该红光玻璃在1000 cd/m2@460 nm强蓝光照射下96小时发光强度基本不变,大幅度提高了红光玻璃的稳定性。掺杂多种稀土离子(Yb3+,Tb3+, Gd3+,Eu3+,Dy3+,Sm3+)后,发光峰为639-681 nm,荧光量子效率可达20-66.7%,稀土离子能够弥补CsPb(BrxI1-x)3量子点的表面缺陷,增强辐射复合率,从而有效提高红光玻璃的发光强度和量子效率。掺杂过渡金属(Mn、Zn、Ti等)可部分取代Pb,减少对环境的影响。采用荧光光谱、XRD等分析方法研究了红光量子点与掺杂离子之间能量传递和发光机理。采用Zn、Mn双掺取代Pb,制备了无Pb的Cs3MnxZn(1-x)Br5,发射峰在520-522 nm,荧光量子效率为43%,为实现无铅钙钛矿玻璃的研究奠定基础。.红光玻璃与Ce3+: YAG、CsPbBr3玻璃和InGaN芯片结合,制备出光效118 lm/W、色温(4745-6458 K)、显色指数(74-80)的白光LED器件,实现了暖白光发射,色域达到Rec.2020的93.4%和NTSC 1953的126%。可推动红光玻璃在固态照明和背光显示方面的应用。.制备的CsPbBr1.5I1.5纳米晶玻璃在800 nm激光的激发下,获得了位于590 nm的随机激光,在-180 ºC下激光阈值为0.79 mJ/cm2。这为其在高清晰度显示器和光子器件中的应用奠定了基础。将Tb3+、Eu3+、Dy3+、Sm3+掺杂的钙钛矿纳米晶玻璃与Si光电探测器集成,可应用于光学探测,其中Tb3+掺杂钙钛矿玻璃在320 nm处,响应度提高到0.005 A/W,是Si光电探测器的5倍。Dy3+掺杂钙钛矿玻璃的响应度为0.00 6A/W,比Si光电探测器高6倍。为提高Si光电探测器的性能提供了新的策略。项目研究发表相关论文27篇,申请专利7项(授权专利5项),培养硕士研究生20名,参加学术会议并作报告12人次。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
频率上转换三维显示用稀土掺杂铋碲酸盐玻璃的制备与光谱行为调查
单频上转换三维立体显示用稀土掺杂氧卤玻璃研究
固态照明用金属银纳米粒子荧光增强型稀土掺杂玻璃荧光体的研究
单分散晶相复合稀土掺杂硫系玻璃陶瓷的可控制备与随机激光特性研究