大数据环境下基于计算智能的预测建模技术及其在电力负荷预测中的应用

基本信息
批准号:71871101
项目类别:面上项目
资助金额:49.00
负责人:鲍玉昆
学科分类:
依托单位:华中科技大学
批准年份:2018
结题年份:2022
起止时间:2019-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:艾小猛,Raymond Chiong,白顺明,杨建华,李晓艳,仉梦林,David Cornforth,帅航,张心泽
关键词:
预测模型混合预测法预测方法智能预测法
结项摘要

Big data has revolutionized the modern world, and is now the hottest research topic. The current trend is expected to continue into the foreseeable future. What is of importance is how organizations develop the tools and means necessary for reacting to, and exploiting the increasingly available big data for their advantage. In view of the fact that the well-established prediction techniques have been suffering the lack of integrated profile data view, specific modeling techniques, integrated platform for prediction modeling and whole understanding toward the prediction problems, it is challenging to re-establish computational intelligence based prediction modeling framework with specific considerations of the big data environment having large volumes of high dimensional data and real-time calls on computing. The aim of this project is, therefore, to create novel predictive models based on computational intelligence methods in large-scale and data pre-processing and data infusion analytics, deep support vector machine based forecasting models, and ensemble learning based computational framework for predictive analytics. Load forecasting will be the application domain to verify the proposed big data enabled computational intelligence based prediction systems. Generally speaking, this present study can make attributions in terms of innovative and theoretical development in field of big data driven prediction and provide implications for practitioners.

大数据革命性地推动了社会的发展并成为研究的热点,研发充分利用大数据优势的工具与方法有着重要意义。针对现有预测技术应用研究缺乏大数据环境下对预测数据全景性、预测建模技术针对性、预测建模平台化和预测问题全面性的研究思维,本项目以基于计算智能的预测建模技术和电力负荷预测为切入点,构建新颖的海量、高维、实时特征下的大数据驱动的基于计算智能的预测建模框架,重点研究构建预测建模导向的大数据预处理与分析、深度支持向量机预测模型、基于集成学习的预测模型集成计算框架等基础问题,同时结合电力负荷预测的应用特点与新要求开展应用研究。因此,本研究既具有创新性基础研究的理论意义,同时也表现出良好的应用研究的现实意义。

项目摘要

本项目聚焦“大数据环境下的预测”这一问题场景,从全景数据视角,研究数据的多源融合、多尺度分析等预处理与分析技术;从数据驱动建模视角,研究基于深度学习的预测模型;从大数据应用的平台化视角,设计基于深度学习和集成学习的预测建模集成框架。同时,携手来自国家电网公司华中分部的项目组成员,围绕电力负荷预测、电力电量交易优化、跨区省间清洁能源协同消纳等重要行业应用问题开展深入应用研究,推动预测技术研究的“大数据化”和提升我国清洁能源消纳。项目成果包括10余篇国际国内领域期刊论文、授权发明专利1项以及在湖北省、重庆市、江西省和河南省开展成果应用所取得的显著社会效益和经济效益。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

DOI:10.16606/j.cnki.issn0253-4320.2022.10.026
发表时间:2022
2

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
3

基于LASSO-SVMR模型城市生活需水量的预测

基于LASSO-SVMR模型城市生活需水量的预测

DOI:10.19679/j.cnki.cjjsjj.2019.0538
发表时间:2019
4

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016
5

中国参与全球价值链的环境效应分析

中国参与全球价值链的环境效应分析

DOI:10.12062/cpre.20181019
发表时间:2019

鲍玉昆的其他基金

批准号:70401015
批准年份:2004
资助金额:10.00
项目类别:青年科学基金项目
批准号:71571080
批准年份:2015
资助金额:49.30
项目类别:面上项目
批准号:70771042
批准年份:2007
资助金额:20.50
项目类别:面上项目

相似国自然基金

1

面向智能电网负荷预测的电力大数据关键技术

批准号:61472236
批准年份:2014
负责人:雷景生
学科分类:F0207
资助金额:85.00
项目类别:面上项目
2

大规模数据环境下的电力负荷概率密度预测方法研究

批准号:71401049
批准年份:2014
负责人:何耀耀
学科分类:G0104
资助金额:21.00
项目类别:青年科学基金项目
3

智能电网环境下的负荷预测理论与方法研究

批准号:51277057
批准年份:2012
负责人:罗滇生
学科分类:E0704
资助金额:70.00
项目类别:面上项目
4

基于集成学习的区间型电力负荷预测技术研究

批准号:71601147
批准年份:2016
负责人:胡忠义
学科分类:G0104
资助金额:17.00
项目类别:青年科学基金项目