As a new concept appeared in only recent two years, acoustic metasurface has successfully attracted people’s attention due to its unique property: it is able to mold acoustic wavefronts into arbitrary shapes with subwavelength resolution. Compared with phononic crystals and acoustic metamaterials that are usually three-dimensional in space, two-dimensional acoustic metasurfaces have their thickness smaller than a single wavelength and thus occupy a much smaller volume, which makes them very promising in various application fields such as acoustic imaging and detecting, ultrasonic diagnosis and treatment, and acoustic lenses’ design and optimization. Although some effort has been devoted to the topic of acoustic metasurface, some fundamental questions remain unanswered. In this project we will systematically study the mechanism and properties of acoustic metasurfaces. By introducing the loss and gain factors into the metasurfaces and considering the influences of PT-symmetry, we will explore the unidirectional and nonreciprocal propagation of acoustic waves. Using the acoustic metasurfaces, we will try to increase or decrease to a large extent the acoustic scattering cross-sections of given objects. We will also exploit the possible influences of quasi-periodicity and randomness in the structure of acoustic metasurfaces on their physical properties. Furthermore, we will try to extend the acoustic metasurfaces’ exceptional abilities of modulating the acoustic waves to various areas of applications. With such a project, we hope a more general and comprehensive understanding of the acoustic metasurfaces can be obtained and some future applications in the fields of biology, medicine and industry can be expected.
声学超表面作为近2年提出的新概念,一出现便吸引了人们的关注,其独特的优势在于:它不仅能够几乎随意地调控声波的波前,而且与三维的声子晶体、声学超材料相比,二维的声学超表面,其厚度比一个波长还小,占用空间很少,因而具有广阔的应用前景,在声学成像与探测、超声诊断与治疗、声透镜设计与优化等诸多领域具有独到的优势。尽管如此,与已然蓬勃发展的声子晶体和声学超材料相比,声学超表面的研究才刚刚起步,还有很多未知的领域等待人们去探索。有鉴于此,申请人把声学超表面作为研究对象,从多个角度系统深入研究其物理性质:引入材料的损耗/增益因素,考虑时空对称性的影响,探索声波的不可逆传播;发挥其优势,高效地调控目标物的声散射信号;跳出传统思路的限制,优化其空间组织形式;结合应用前景,大幅度拓展对声波的操控能力。通过本项目的开展,力求对声学超表面有一个比较全面而深入的了解,为其在生物、医学、军事等领域的应用奠定基础。
结合应用前景,我们对声学超表面的物理机制、结构形式和关键性能等方面进行了研究,取得了一定的成果。具体来说,利用声学超表面,我们能高效地对声波进行各种调控,包括对水中正入射声波实现99.7%的吸收,在斜入射时也能保持超过90%的吸收率直至50度入射角。研究了膜型超表面在不同情况下所能达到的声波吸收效率的上限,通过分析表面阻抗和能流密度,并结合格林函数,得到了单向入射声波的最大吸收效率。利用Mie氏散射,设计超表面使得彼此正交的偶极共振模在低频区重合,依据Kerker条件,通过调节几何参数实现了前向散射加强和背向散射减弱,得到了阻抗匹配的惠更斯超表面。设计了一种“乐高积木”型超表面,它由内外2层镂空的同心钢环面组成,声源位于圆心。通过调节钢环的缺口大小,以及内外层钢环之间的耦合强度,可在低频区获得显著增强的Purcell因子共振峰。近场强度分布和远场辐射效果都可用各向异性有效介质理论解释。面向医疗、生物等领域的实际应用,我们设计了针对水中声波进行操控的声学超格栅。从实际需求出发,逆向求解问题,根据所要达到的声波调控目标,反过来确定散射体材料和几何参数。尽管只用到铁圆柱这种最简单的散射体,在多重散射理论和遗传算法的协助下,依然能快速找到满足实际需求的结构,能实现多种声波操控目标:分束反射、异常反射、回反射、异常透射,PT材料导致的非对称散射等,且调控效率接近100%。. 超表面只有亚波长厚度,却能调控波的传播,而拓扑结构也有类似功能。为此,我们将超表面的研究拓展到在亚波长厚度弹性薄板中的超声兰姆波以及水表面波。发现在薄板中不同拓扑类边界上传播的超声兰姆波,具有显著提高的信息容量,为实现可控、鲁棒、高容量的声通讯提供了有益的尝试。水表面波和声波类似,都是机械振动引起,但它是纵波和横波的混合体,形态更复杂。在水底面引入人工结构,能在低频区域实现对水波传播的有效调控。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
响应面法优化藤茶总黄酮的提取工艺
时间序列分析与机器学习方法在预测肺结核发病趋势中的应用
家畜圈舍粪尿表层酸化对氨气排放的影响
古戏台传音的秘密
声学相位渐变超构表面的衍射机制研究
基于振幅和相位共同调控的声学超构表面的构建、机理及应用研究
宽带编码声学超表面的构建理论和方法研究
高效消声声学超界面的设计、制备与表征