Air-core permanent magnet synchronous linear motor (PMSLM) is the core component for High-grade CNC machine tool, and the performance of the PMSLM thrust determines the manufacturing precision of the CNC machine tool. It is necessary to consider the change of working condition and manufacturing error, which influence the thrust performance of linear motor, when optimize the PMSLM. However, the traditional optimization algorithm do not fully considered the factors mentioned above, and the robustness of the optimal result is poor. In order to obtain the optimal results with robustness and compatibility of multiple working conditions, this project proposes a new PMSLM topology structure, and optimizes it by robust optimization algorithm and multiple working conditions compatible optimal design. The main works are as follows: 1) This project proposes a new topology of linear motor with double-layer backward tilting windings, then the influence of structure parameters on the thrust performance are studied by analytical method to obtain the key parameters; 2) The robust model between the key structure parameters, the manufacturing error of them and the thrust performance is established based on response surface methodology and quantified constraint satisfaction problem method; 3) This project, which takes “reduce the thrust ripple and improve the thrust density” as optimal goal, proposes the algorithm of Interval Analysis combined with Filled Function to optimize the PMSLM to improve the robustness of optimal results; 4) The restructuring and optimal design is carried out under the weight of different working conditions to realize compatibility design which balance different working conditions, and the simulation and prototype experiment are carried out. The research of this project provides theoretical support for the optimization design of PMSLM that is characterized by robustness and compatibility of multiple working conditions.
无铁芯永磁同步直线电机是高档数控机床的核心驱动部件,其推力性能决定了机床加工精度。在对电机推力性能进行优化设计时,一般对工况的变化、制造误差及后期磨损考虑不足,优化结果稳健性差。本项目设计一种新型直线电机结构,在对其单一工况优化的基础上,进行多工况兼容优选,实现电机在多工况下的稳健优化设计。主要研究内容如下:1)设计一种新型双层反向倾斜绕组无铁芯永磁直线电机,分析结构参数对推力性能的影响规律,获取关键结构参数;2)基于响应面与量词约束满足相结合的方法,建立关键结构参数及其制造误差与推力性能的稳健优化模型;3)以“推力波动小,推力密度大”为优化目标,基于稳健优化模型,提出了采用区间分析与填充函数融合算法,对直线电机进行优化,提高单工况下优化结果的稳健性;4)综合考虑工况权重,开展多工况兼容的二次优选设计,并进行仿真实验和样机实验。本项目的研究为直线电机多工况下的稳健优化设计提供理论支撑。
无铁芯永磁同步直线电机是高档数控机床的核心驱动部件,其推力性能直接影响机床加工精度。在对电机推力性能进行优化时,多在某一工况下追求推力性能最优。没有考虑制造误差、使用过程中的磨损等不确定因素引起的设计参数值变动对电机推力性能的影响,优化结果缺少稳健性;没有考虑工况变化对推力性能的影响,优化结果缺少多工况兼容性。因此,本项目开展了多工况永磁同步直线电机稳健优化。主要研究内容如下:1)设计一种双层反向倾斜绕组永磁同步直线电机拓扑结构,并对双层反向倾斜绕组永磁同步直线电机进行优化,得出如下结论:与传统矩形线圈永磁同步直线电机比较,当线圈倾斜角度在2°~9°时,新型拓扑结构直线电机电机平均推力较大,推力波动较小。2)建立关键结构参数及不确定因素引起的尺寸偏差与推力性能的稳健优化模型,并采用传统优化算法实现电机稳健优化设计;建立电机确定性优化模型,并采用稳健优化算法实现电机稳健优化设计;与确定性优化算法相比较,稳健优化设计方法(稳健优化模型+传统优化算法,确定优化模型+稳健优化算法)所得最优结构尺寸在设计参数尺寸偏差范围内,使得电机在平均推力不削弱(平均推力≥40N),推力波动较小,推力波动变化范围较小,推力性能输出稳定,能够满足工程需求(推力波动≤2%)。3)在单一工况优化的基础上,综合考虑工况权重,实现电机多工况优化设计。某一工况下的最优结构参数,在其它工况下不一定有好的输出:各工况下的最大推力波动值达到5.578%,超出电机推力波动需求;多工况兼容的最优结构参数,在不同工况下输出性能都较稳定:各工况下的最大推力波动值达到1.856%,满足电机推力波动需求。该项目设计了一种新型双层反向倾斜绕组永磁同步直线电机拓扑结构,抑制电机推力波动,提高推力密度;建立包含电机关键结构参数尺寸偏移的稳健优化模型,提出一种基于σ水平稳健判据的稳健优化算法,实现电机稳健优化设计;综合考虑工况权重实现电机多工况兼容优化设计。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于铁路客流分配的旅客列车开行方案调整方法
一种基于多层设计空间缩减策略的近似高维优化方法
基于多色集合理论的医院异常工作流处理建模
基于MCPF算法的列车组合定位应用研究
基于腔内级联变频的0.63μm波段多波长激光器
准正弦环形绕组混合调制磁极永磁直线同步电机理论研究
开绕组永磁同步电机全速域优化模型预测控制研究
齿槽型直线发电机多工况优化设计和无传感控制研究
基于电流预测控制的绕组分段永磁直线同步电机高精度推力控制研究