Stroke is the second leading cause of death worldwide, and thrombolytic therapy is the only approved therapy for acute ischemic stroke. Recanalization following ischemia causes severe cerebral ischemia-reperfusion injury, which lacks of effective treatment. Therefore, there is an urgent need to develop novel neuroprotective agents. In recent years, H2S has been demonstrated cytoprotective effects in cerebral ischemia-reperfusion injury and shows good prospects for clinical application. However, the protective mechanisms of H2S have not yet been fully elucidated. In this research, we will evaluate the neuroprotective effect of H2S against rat cerebral ischemia-reperfusion injury, and identify its dose-range. Furthermore, we will examine the effects of H2S on autophagy through observing the changes of autophagy in the ischemia-reperfusion brain. In preliminary studies, we have proved that H2S could protect brain from ischemia-reperfusion injury through inhibition of autophagy. To further elucidate the underlying molecular mechanism that H2S affects autophagy, we will observe and analysis the relationship between the autophagy inhibitory effect of H2S and the impact of H2S on PI3K/Akt/TOR pathway. These findings will provide theoretical basis for novel neuroprotective treatment in stroke.
脑中风严重危害健康,恢复血供引起的脑缺血再灌注损伤后果严重,寻找保护脑缺血再灌注损伤的药物和治疗方法迫在眉睫。自噬在脑缺血再灌注期加重细胞损伤,抑制自噬成为保护脑缺血再灌注损伤中一个新的治疗策略。H2S是近年发现的气体信号分子,H2S可以保护脑缺血再灌注损伤,但机制尚不完全清楚,H2S是否会通过抑制自噬而在脑缺血再灌注中起保护作用?仍然未知。本课题拟通过大鼠脑缺血再灌注模型验证H2S对脑缺血再灌注损伤的保护作用,然后观察自噬体数量和自噬相关基因的变化,探索H2S脑保护作用与自噬的关系。并通过特异性阻断PI3K 、Akt和mTOR,观察H2S处理后PI3K/Akt/mTOR信号通路活性和自噬的改变,以期发现H2S影响细胞自噬的分子机制。研究将促进阐明自噬与脑缺血再灌注损伤的关系以及H2S保护脑缺血再灌注的潜在机制,并为其治疗提供一个新的思路。
近年研究表明:自噬是脑缺血再灌注(I/R)损伤的主要作用机制之一,在I/R不同时期调节自噬活性,可能会成为治疗的一个新策略。硫化氢(H2S)近年来被发现是一种新型的机体内气体信号分子,在I/R损伤中通过抑制氧化应激、凋亡和炎症发挥神经保护作用,但是H2S对于I/R过程中自噬的作用尚不清楚。. 本论文在体内和体外I/R模型上研究了H2S的供体— 硫氢化钠 (NaHS)对自噬活性的调节与其神经保护作用的联系。体外研究结果显示:NaHS(50 - 200 μM)提高缺氧缺糖/复氧复糖(OGD/R)损伤的SH-SY5Y细胞存活率;逆转OGD/R诱导的LC3-II表达水平的升高,这一过程可以被自噬体降解抑制剂巴弗洛霉素A1阻断, 表明NaHS加快自噬体降解;NaHS不影响ULK1复合体和Beclin-1复合体的激酶活性和表达量,表明NaHS不影响自噬体合成。体内研究结果显示:NaHS(1 - 4 mg/kg)剂量依赖地减轻I/R造成的神经行为损伤以及脑梗死;雷帕霉素剂量依赖地抑制H2S减小脑梗死体积的作用,表明H2S的保护作用与影响自噬有关; NaHS减少I/R 6 h后缺血皮层中自噬体的数目,降低I/R 6 h、I/R 24 h的皮层和I//R 24 h的海马中LC3-II的表达水平,提高p62表达量,对纹状体中LC3-II表达量无影响;NaHS加快I/R 6 h皮层组织中的自噬体降解;Baf A1阻断H2S减小脑梗死体积的作用,提示H2S可能通过加快自噬体降解发挥保护作用;. 由上述结果可得出以下结论:NaHS在体内、外均具有神经保护作用,这些作用可能与影响缺血再灌注过程中细胞自噬有关;NaHS对自噬过程的影响可能集中在加快自噬体降解,而不影响自噬体的合成。这些结果为硫化氢的神经保护作用机制提供了新证据,为研发H2S相关的神经保护剂的研发提供了新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
基于SSVEP 直接脑控机器人方向和速度研究
坚果破壳取仁与包装生产线控制系统设计
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
内质网应激-自噬信号通路介导硫化氢保护肾缺血再灌注损伤的机制研究
外源性硫化氢对老龄脑缺血再灌注损伤的保护作用及机制
miR-290在外源性硫化氢保护大鼠脑缺血再灌注损伤中的表达及功能研究
irisin通过激活自噬介导了RIPC对肾脏缺血再灌注损伤的保护作用