Precise dynamic model is the key to improve robotic control accuracy. However, for multi-field coupled systems, the dynamical behaviors always show a highly nonlinear and strongly coupled time-varying characteristic that is difficult to establish precisely. For example, the maintenance robot for EAST nuclear fusion device, limited by its control accuracy, can only be manually operated remotely. The maintenance efficiency is so low that its multi-field coupling dynamics needs to be studied urgently. Machine learning can avoid modeling and solving of complex dynamics. Applicant's previous study found that: for global machine learning which completely abandons the mechanical model, although the sample data is easy to obtain, it has poor generalization ability and low reliability for application. Meanwhile, the experimental data required for local learning is difficult to measure directly. This project intends to adopt a hybrid method of mechanics modeling and machine learning. Firstly, analytic method is employed to derive the known parts (velocity, acceleration, gravity, etc.) in the dynamics formulation, and then the local machine learning models will be established focusing on the unknown coupling factors. The two parts are integrated together to form a closed loop. Based on the Levenberg-Marquardt method and the error transfer mechanism, the problem that local model data cannot be obtained will be solved by using global experimental data to train local machine learning models. Finally, an entire dynamics model that can be quickly solved will be built to provide the basis for improving the control precision and provide a reference for the dynamics research of the same kind of multi-field coupling systems.
精确动力学模型是提高机器人控制精度的关键。但对于多场耦合系统,动力学呈现高度非线性、强耦合的时变特性,难以精确建模,如EAST核聚变装置维护机器人,受限于控制精度,目前只能人工远程操作,维护效率很低,其多场耦合动力学特性亟待研究。机器学习可避免复杂动力学建模和求解。申请者前期研究发现:完全摒弃力学模型的全局机器学习虽然样本数据容易获得,但泛化能力弱、可靠性低,而局部学习所需实验数据又难以测量。本项目拟采用力学建模-机器学习混合方法:首先利用解析法建立动力学方程中的已知部分(速度、加速度、重力等),然后针对未知耦合因素建立局部自学习模型,两者集成形成闭环;并基于Levenberg-Marquardt方法和误差传递机制,解决局部学习数据无法获得的难题,实现全局数据训练局部模型;最终建立可快速求解的多场耦合动力学模型,为提高机器人控制精度提供依据,同时也为同类多场耦合系统动力学研究提供参考。
目前的聚变遥操作系统,由于缺少精确的动力学模型,为了提高维护操作的精度和稳定性,控制系统引入人工闭环机制(Man-in-the-loop),采用主从机械臂的形式,维护效率很低,仅适用于对运行时间要求不高试验装置,而对于未来商用的聚变电站,高效的自动化维护则是必然的趋势。因此,面向聚变堆工况下的机器人动态建模和精确控制已成为该领域的发展趋势和必须解决的问题。.本项目将面向磁约束核聚变装置遥操作技术发展需求,依托现有EAST托卡马克装置及其多关节维护机械臂EAMA系统,开展机器人多场耦合工况下的系统动力学精确建模方法研究。本项目采用拉格朗日解析法和机器学习混合方法建立动力学精确模型。首先利用解析法建立动力学方程中的已知部分(速度、加速度、重力等),然后针对未知耦合因素建立局部机器学习模型,两者耦合形成闭环;并基于Levenberg-Marquardt最小二乘法和误差反向传递机制,解决局部学习数据无法获得的难题,实现全局实验数据训练局部模型;最终建立可快速求解的多场耦合动力学模型,为提高机器人控制精度提供依据,同时也为同类多场耦合系统动力学研究提供参考。.同时,本项目基于CMOR动力学方程的复杂非线性和刚柔耦合的不确定性,设计了基于Hamilton-Jacobi Inequality 的滑模鲁棒控制器(HSMRC),并进行了CMOR刚柔耦合轨迹跟踪误差分析。基于Levenberg-Marquardt(LM)非线性阻尼最小二乘算法、空间网格及线性化可变负载原理设计了变参数补偿模型,对CMOR在不同负载、不同位姿下的运动学模型进行变参数辨识,提高轨迹跟踪精度。最后通过ADAMS-MATLAB/Simulink联合,分析了HSMRC控制器对CMOR刚柔耦合模型轨迹跟踪精度,柔性变形和控制误差导致末端位置误差超过0.1m。通过空间网格原理及LM变参数误差补偿算法补偿后末端位置误差平均值小于0.02m,末端绝对误差值缩小5倍。为CMOR控制器设计及轨迹跟踪精度的提高提供了参考。.本项目形成的算法与现有机械臂控制系统集成,在实验中提高了系统运行精度,保证机器人系统在核聚变复杂环境中的安全运行。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于铁路客流分配的旅客列车开行方案调整方法
基于多色集合理论的医院异常工作流处理建模
基于旋量理论的数控机床几何误差分离与补偿方法研究
基于腔内级联变频的0.63μm波段多波长激光器
新型树启发式搜索算法的机器人路径规划
基于视觉动力神经场的机器学习方法研究
基于机器学习的水稻生长过程建模方法研究
电磁驱动无人驾驶机器人多场耦合机理及仿生集成优化研究
面向翼型基于机器学习理论的湍流建模方法研究